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Abstract. We extend Sklyanin’s method of separation of variables to quantum integrable models
associated to elliptic curves. After reviewing the differential case, the elliptic Gaudin model studied
by Enriquez, Feigin and Rubtsov, we consider the difference case and find a class of transfer matrices
whose eigenvalue problem can be solved by separation of variables. These transfer matrices are
associated to representations of the elliptic quantum giyug(si>) by difference operators. One

model of statistical mechanics to which this method applies is the interaction-round-a-face model
with antiperiodic boundary conditions. The eigenvalues of the transfer matrix are given as solutions
of a system of quadratic equations in a space of higher-order theta functions.

1. Introduction

The method of separation of variables in integrable lattice models, proposed by Sklyanin, is
a method to find eigenvalues and eigenvectors of transfer matrices. It is an alternative to the
Bethe ansatz and works in some situations where the Bethe ansatz does not, and gives an insight
in the completeness of the Bethe ansatz. The method is closely related to Baxter's method
(ch 9 of [2]), and in fact the eigenvalue problem in the separated variables (in the difference
case) becomes the Baxter difference equation. In the Gaudin model, one of the simplest
guantum integrable systems, this method relates the problem of finding common eigenvectors
of Gaudin Hamiltonians to the problem of finding differential equations on the Riemann sphere
with regular singular points whose monodromy is trivial. As noticed by Feigin and Frenkel [9],
this is a special case of the Beilinson—Drinfeld ‘geometric Langlands correspondence’ relating
certain local systems on a complex curvéanodules on moduli spaces of principal bundles
on the curve.

Both for quantum integrable models and for the connection to the Langlands program, it
may be interesting to extend the method of separation of variables to more general models.

The class of quantum integrable systems (families of commuting operators) one considers
in this context arise in different classes. There are the differential models, such as the
guantization of the Hitchin systems. They are given by families of commuting differential
operators and are associated to complex curves. The Gaudin operators are the operators
associated to the Riemann sphere. More generally, one considers differepceformed
models, such as the six-vertex model, which degenerate to the differential model when the
parametey tends to one. These models appear in three sorts: rational, trigonometric and
elliptic, depending on the type of coefficients in the commuting operators.

From the point of view of representation theory, the differential models are related to Kac—
Moody Lie algebras, and thedeformed models to (infinite-dimensional) quantum groups.
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We consider here models relatedstz. In the differential rational (genus zero) case
the separation of variables was considered by Sklyanin [10] and Frenkel [9]. A version of the
separation of variables for the genus-one differential case was considered by Eatigljié},
who also made an explicit connection to the Langlands correspondanceq-défermed
rational and trigonometric case were studied by Sklyanin [10] and Tarasov—Varchenko [12].
The latter authors introduce the notion of a difference equation with regular singular points,
thus giving ag-version of the relation described above for Gaudin models.

Here we consider the-deformed elliptic case. The class of difference operator we give
is both ag-deformation of the Enriquez—Feigin—Rubtsov differential operators and an elliptic
version of the operators studied by Tarasov—Varchenko. Common eigenfuncions may be
constructed by the method of separation of variables. Moreover, the commuting difference
operators we introduce can be restricted to functions on a finite subset of points. This restriction
turns out to give the commuting transfer matrices of interaction-round-a-face models with
antiperiodic boundary condition. This model provides an example of a model solvable by
separation of variables but not by Bethe ansatz. Other elliptic models, related X&'the
model, have recently been studied by the method of separation of variables by Sklyanin and
Takebe [11].

The algebraic structure at the origin of our constructions is the elliptic quantum group
E. ,(sl»). Indeed, the starting point is the construction of a representation of this quantum
group by difference operators which generalizes the ‘universal evaluation module’ of [7].

The paper is organized as follows. In section 2 we review the separation of variables in
the differential elliptic case. Most of this part is essentially taken from [4], but we add some
remarks on the Bethe ansatz and its completeness.

In section 3 we explain what is needed from the theory of elliptic quantum groups and
introduce a class of representationsiy,(sl) by difference operators and relate them to
known representations. Twisted commuting transfer matrices are then introduced and the
method of separation of variables is applied to construct (Bethe ansatz) eigenvectors.

In section 4 we consider the restriction of the transfer matrix associated to the tensor
product ofn fundamental representations to functions of a finite set of cardindligrzl show
that we obtain the transfer matrix of an interaction-round-a-face (IRF) model with antiperiodic
boundary conditions. The eigenvalues are then obtained as the solutions of a system of
quadratic equations in arrdimensional space of theta functions of order

In the appendix we give an account on ‘elliptic polynomials’, which are (twisted) theta
functions of orden.

2. The differential case

Let us start by introducing a family of commuting differential operators associated to an elliptic
curve withn marked points and highest weight representationss@(C).

Let the elliptic curve b = C/T withT" = Z+tZ and Imz > 0. The marked points are
the projections ofi pointszy, .. ., z, € C, withz; # z; modT fori # j. The representations
areMy,, ..., My, where, forA € C, M, denotes the Verma module (defined below in 2.1 of
highest weightA of s/5(C).

Thus our parameters atezy, ..., z,, A1, ..., A,.

Let 6(z) = — ), eXplin(j+3)%t +27i(j +3)(z+3)) be the odd Jacobi theta
function, and set; (z) = 4—5¢0 This is the unique meromorphic functionofegular on
C — T, with a simple pole with residue one at 0, and such that + r + s7) = €40, (2),

r,s € 7.
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Lete = (30), £ = (30), h = (7.9) be the standard generatorsséf(C). Fora e si>(C)
leta®” denote the action af on theith factor of the tensor produdt = Mr, @ Q@ My,
Introduce the following endomorphisms &f depending oz, A € C:

"0z —z) - ; Y i
h(z)=;mh() ek(Z)ZZ;O'—A(Z_Zi)e() fA(Z)Z;UA(Z—Zi)f()~

The family of commuting differential operators is then obtained by the following generating
function, which is an elliptic version of the generating function of Gaudin Hamiltonians [10].

Theorem 2.1.Let, forz € C, S(z) be the differential operator acting on functions of one
complex variables. with values in the zero weight spag#f0] = {v € M, Y, hv = 0} of
M:

3 1\
S(z) = <87 - —h(z)> +e,(2) fo.(2) + fu@)exn(2).
ThenS(z2)S(w) = S(w)S(z).

One way of proving this theorem is to notice that it is a special case of the flatness of the
KZB connection (proposition 2 in [5]). The relation to the KZB connection is the following.

In thesl,(C) case, the KZB connection involves the differential operators (appearing in the
right-hand side of the KZB equations):

0 N 106G -

H. = —hD LD p® +o,(z; — Zk)e(j)f(k) +o_,(z; — Zk)f(j)e(k)
' M Gz 20G —w ! !
wherej =1,...,n,and
2 1 &1 00 (@ — ) ; ; dos(z; — zx)
Ho= 2 += R AOYAC) J — (oD £ 4 £ ) j ]
0= 52 2 ,;1 2 0(zj — 1) (@S ITe =%

The fact that the connection is flat means in particular that these operators form a commuting
family when acting onM[0]-valued functions. The terms withh = k are understood as
the limit as the argument; — z; tends to zero. S@”(0)/6(0) meanss”(0)/6'(0) and
(80;,/0A)(0) = (6'/0) (A). Note thatZ ., H; vanishes onM[0]-valued functions. We
call the operatorg{;, j > 1 the elliptic Gaudln Hamiltonian anH, the (generalized) Laén
Hamiltonian (it is the Lara operator it = 1).

The relation between these commuting operators&pylis as follows.

Proposition 2.2. Lett £(z) = 6'(2)/6(2), §$(z) = —¢'(z). Then
S@ =Y 56 =20+ Y Hif (2 —2) + Ho

k=1 k=1

andc; is the Casimir value; = 1A ;(A; +2).

The proof of this fact follows by noting thaf(z) is a meromorphic doubly periodic
function of z with at most double poles at the poinis By expandingS(z) in a Laurent
series up to the constant term at the: z;, we find that the difference between left-hand side
and right-hand side is a differential operator whose coefficients are regular elliptic functions
vanishing at least at one point. Such an operator vanishes by Liouville’s theorem.

T The relation of these functions with ttle classical Weierstras®lp functions¢ (z) = % +5)ez2—(0.0) %ﬂr -
et T # @ =—0'@)1sL() = (@) + 2z, p(2) = §(2) — 2n1, where 21 = 6"(0)/30(0).



8004 G Felder and A Schorr

The eigenvalue problem for common eigenfunctiondgf. . . , H, canthen be formulated
asS(u = q(u with q(z) = Y i1 $6(z — 2) + Y _j_1 & (2 — 2x) + €. The eigenvalue of
Hjisthene;, j =0,...,n. Since}_ ;- H; = 0, one must necessarily haset - - - +¢, = 0.

Common eigenfunctions aff; and thus ofS(z) can be obtained by the Bethe ansatz
method. They have the forrfi(ws) ... f(w,)vo Whereug is the tensor product of highest
weight vectorsm = %Z Aj andwy, ..., w, are a solution to the system of Bethe ansatz
equations, see [5, 6] and below.

2.1. Separation of variables
We realize the representationsséf(C) by differential operators.

Lemma 2.3.For any A € C, the mapf +— ¢, h — —ZI% +A, e z@ + A ; defines
a representation of/,(C) on C[¢], the Verma modul@/,. If A is a non- negatlve integer,
t2*1C[¢] is an invariant subspace and the quotidnt = C[¢]/+**C[] is irreducible with

highest weight vectat € Ker(e) of weightA.

The proof consists of checking the relatioas [] = &, [k, ¢] = 2e, [h, f] = —2f and
et = 0.

Therefore, we may realize the tensor producasC|r, ..., t,], and the tensor product
of irreducible representations (for integey) asClz, . . tn]/Z (tA +1(C[t1, ..., t]). Then
M]OQ] consists of homogeneous polynomials of degvee: ZAk/Z. We may then view
e, (2), fo.(2), h(2), S(z), H; as differential operators in + 1 variablesi, 1, ...,t,. They
commute when acting on functions which are homogeneouys in. , ¢, of degreen.

2.2. Separated variables

We express the differential operatafé&) in terms of new variables so that the eigenvalue
problem is reduced to ordinary differential equations. Following Sklyanin's idea, the new

variablesC, yi, ..., y, are the zeros and the leading coefficient of the opergtor
0(z —
fi2) = H
0(z — Zj

Since fi(z) is realized as a multiplication operator and both sides of this equation are
functions ofz with definite transformation properties under translations by the ldfttj¢his
equation does define, locally around a generic point, a biholomorphic change of variables
(C,y1,...,y0) = (A, 11, ..., t,). The formulae are

[1,60G —v)
i =
9/(0) Hj:j;éi Q(Zi - Zj)

and

A= Z(J’j —zj)
=1

From these formulae we deduce the transformation properties of partial derivatives:
i=i+ 9(y,—1k)t3
dy; 0L = 0(;—m)



Separation of variables for quantum integrable systems 8005

The next step is to remark that a functiaC, y4, ..., y,) obeysS(z)u = q(z)u with
4@ =21 %6@ —2) + Y &l (@ — ) +€o and)_ ., €; = 0if and only if it obeys
Sj)u=q(yjuforall j =1,..., nandall generic pointgy, ..., y,). Here the ambiguous
notationS(y;) means: write differential operatdi(z) with the coefficients on the left of the
partial derivatives and replagey y; in the coefficients. To prove this statement notice that, if
S(yj)v=q(y)v, then[]0(z—z:)(S(z) —q)u(y1, ..., y.) is a holomorphic theta function
in z of ordern vanishing at generic pointg;. It thus vanishes: see the appendix.

Itis then convenient to use the identiy (z), f1(z)] = —h'(z) on M[0], to write S(z) as
S(z) = (% - %h(z))2 — I'(2) + 2f,.(2)ex(2), so that the last term vanishes if we set y;
and we get

S ( R ))2 &
V)= a2 5¢0i—w ).

J ayj pot 2 J

Proposition 2.4. A functionu (A, 11, . . ., t,), homogeneous of degree= % > Arinthey, is

a local solution of the partial differential equatios§z)u = ¢ (z)u, z € C if and only if
u(r,t1, ..., ;) =C"v(y1, ..., Yu)
andv obeys
9 " A -

VZy =q(y; Vy =— =Y —(yj — ). 2
ij Q(YJ)U yi 8yj £y 2 ;(y] 2k) ( )

2.3. Interpolation formula

The formula (1) expresses the valuesqt . ., y, of the coefficients of(z) for z = y;. Since

the coefficients ofS(z) — % « ck(z — zi) are elliptic functions ok with at most simple
poles at, ..., z,, they are uniquely determined by these values, and can be calculated by an
interpolation formula: let us writ§(z) in the form

S@ =3 ap-w+[[0c-0750
k=1 k=1

so thatS(z) is a theta function of order. Thus (see the appendix)

. mO@Z Y Vi = D 2k) 0(z—yj) &

$ _ J#I 2T k J S[

@ ; O vi— 2w z) jgi O(yi — yj)
with

n

. n 9 A, _ 2 1 n
S=]]owi - Zk)<<— -3 i — Zk)) — > i — Zk)>.
k=1 Wi = 2 2=

2.4. Bethe ansatz

The separated equation reads

" cr oo

Vﬁv—(Zfs@(y—Zk)+26j§(y—1k)+eo>v=0 3
k=1 k=1

with v, = L — 3%, %7 (y — 2. Itis a second-order ordinary differential equation with

regular singular points a and characteristic exponents 0 afgd+ 1. Following Hermite's

method to solve the Laenequation [13] we seek solutions of the form

v(y) =€ [ [0 —wo. )
k=1
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Functions of this form are called elliptic polynomials, see the appendix.

Let us first assume that; # z; modT forall j, k. Then we also have, # w; fork # [,
since the only solution vanishing with its derivative at a regular point is the trivial solution.
Rewrite the equation in the formi'(y) — >, Al (y — z)V'(y) + b(y)v(y) = 0 so thath(y)
has at most simple poles at the Taking derivatives of a functionof the form (4) and setting
y equal to one of its zeros, we find the relation

v (i) = Y C(wi — wy)v' (wy) + 200’ (wy).
J#k
Inserting this into the differential equation, we see thét a solution if and only if its zeros
w; obey the ‘Bethe ansatz equations’

ZA,E(wj—z,)—ZE(wj—wk):& j=1...,m.
=1

k:k#j
Let us now consider the more general case of elliptic polynomials (4) vanishingfat i in
some subset of {1, ..., n}. Since the characteristic exponentg;atre Q A; + 1, a solution

vanishing at; must vanish to orde; + 1 and is thus divisible by (y — z;)*** (this is only
possible ifA; € Zso). Theni(y) = [, 0y — z:)~*tv(y) is again of the form (4), but
with m replaced byn = m —3_,_,(A; +1). ltobeys equation (3) with; replaced by-A; —2
fori el.

Thus all elliptic polynomial solutions of (3) are of the form

v(y) =€ []00 -z [To0 — we)
k=1

iel
for some subset of {j | A; € Z>o}, such thaiw; # w; # z; (j # 1) andwy, ..., ws, c obey
the Bethe ansatz equations

S Afw;—z) = Y fwj—w)=2c  j=1... . (5)
=1

kkAj

HereA, = —A, — 2if [ € I andA,; = A, otherwise.
To each such solution there corresponds a common eigenfunctidrich, expressed in
the separated variablesis= C" [] v(y;). Up to a non-zero constant we get

u(r) =€ f(wr) ... f(wa)vy. (6)

Herev; = [, (f )" *1v is a product of singular vectors. Only eigenvectors corresponding
to I = ¢ have non-trivial projections to eigenvectors with values in the tensor product of
irreducible representations.

Eigenvectors of the form (6), such that, ..., w;, ¢ are a solution of the Bethe ansatz
equations (5) withw; # wy, modT, (j # k) andw; # z; mod T are calledBethe eigenvectors

2.5. Completeness of Bethe eigenvectors
Let us consider the common eigenvalue problem
Hiu(A) = €u()) i=0,...,n. @)

Anatural class of functions preserved by the operatbis given by meromorphic sections
of a flat line bundle orE. Namely, let for a character : I' — C*, H(x) be the space of
meromorphic functiong — u(i) € M[0] such thatu(A + 1) = x(Du(r) and

U+ 1) = x (e T o).



Separation of variables for quantum integrable systems 8007

Itiseasytoseetha}(z), fi(z) andd/ar—h(z)/2 preserve functions with these transformation
properties, so thaf(z) and H; preserve{(x).

It is then natural to look for eigenfunctions (non-trivial solutions of the differential
equations (7)) irH(x).

Let =(x) be the set ofe, ..., €,) € C*™? such that there exists a non-trivial function
u € H(x) with Hju = €;u, j = 0,...,n. Leto e I'* be the character such that
o(r+st)= (=1,

Theorem 2.5.Let x € T'*. Then(eo,...,€,) € Z(x) if and only ifzk>1ek = 0 and the
separated problem

V2u(y) = D A(Ar + 26 (y — z)v(y) = (ZE(y — )& +60>U(y)
k k

admits a non-trivial elliptic polynomial solution € ®,,(6™ x). In this case there is a Bethe
eigenvector with these eigenvalues.

Proof. A common eigenfunction, viewed as a polynomiatiihas the form

wOoty ot = Y g, W [

maytetmy=m i

Replacing;, A as functions of the new variables, we obtain

uh,ty, ..., ) =C"v(y1, ..., V)

wherev(ys, ..., y,) isalinear combination of products of theta functions in each of fwath
coefficientSuy, . m, Q" y; — > z) andv(y1, ..., y,) obeys, in each variable, the separated
second-order equation (2 priori the meromorphic function(y, ..., y,) may have poles

on the hyperplan®_ y; = > z; modI". However, this is impossible: consideas a function

of, say,y1 with the other variable fixed at some generic position. Theas a function oy,
being a solution of a linear second-order equation may only have singularities at the poles

of the coefficients. Moreover, sinegis in H(x), the functionsy; — v(y1, ..., y,) belong to
®,,(c™x). Thus the separated problem admits a non-trivial solutid®,jiic™ x). As shown
in section 2.4, such a solution gives rise to a Bethe eigenvector. a

3. The difference case

3.1. Representations of the elliptic quantum grdiy, (si2)

The difference version of the differential operatessz), f;.(z), 9, — h(z)/2, are operators
obeying the relations of the elliptic quantum grofip, (s/2). Let us recall the definitions [7]:
we fix two complex parametets », such that Ingz) > 0. The definition ofE. , (sl2) is based
on a dynamicaR-matrix R(z, A) which we now introduce. Let
(A +210)0(2) oA +2)0(2n)
A= ———— A=

2@ = e —2m Pt = =500 — 2
Let V be a two-dimensional complex vector space with bafdi$, e[ —1], and letE;;e[k] =
Sjrelil, h = E11 — E_y 1. Then, forz, L € C, R(z, ) € End(V ® V) is the matrix

Rz, M) =En®En+E_1 1®FE_1 1+ta(z, VE1® E_1_1
ta(z, —A)E_1_1® E11+ B(z, ME1_1® E_11+ B(z, —\)E_11 ® E1 1.
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This R-matrix obeys the dynamical quantum Yang—Baxter equation
R (z —w, x = 2nh®) R (2, HR® (w, » — 27 D)
= R®(w, HRP (2, 1 — 2ph®)RWP (z —w, 1)

in EndV ® V ® V), z,w,A € C. The meaning of this notation is the following:
R (% — 2nh®)v1 ® v, ® vs is defined as

(R(z, X — 2nu3z)vy ® v2) @ v3

if hvs = ugvs. The other terms are defined similarly: in general Mgt. . ., V, be modules
over the one-dimensional Lie algebya= Ch with one generatok, such that, for alk, V;
is the direct sum of finite-dimensional eigenspatgg:] of %, labelled by the eigenvalue
u. We call such modules diagonalizablemodules. IfX € End(V;) we denote by
XD e End(V1®---®V,) the operator-- ® Id ®X ® Id ® - - - acting non-trivially on theth
factor, and ifX = 3" X; ® ¥x € End(V; ® V;) we setX @) = " XP vV If X (ua, ..., fan)
is a function with values in End;, ® - - - ® V,,), thenX (@, ..., Ay = X (1, ..., n)v
if hDv = v, foralli =1,..., n.

A module overE. ,(sl>) is then a diagonalizablg-moduleW = &®,.c W[u], together
with an L-operatorL(z, ») € Endy(V ® W)) (a linear map commuting with® + 72)
depending meromorphically an 2 € C and obeying the relations

Rz —w, » — 2nh®) LI (2, )L®® (w, A — 2nh ™)
= L®w, )LDz 1 = 20h )R (2 — w, 3). ®)

For example,W = V, L(w,1) = R(w — zo, A) iS a module ovelE. ,(sl,), called the
fundamental representation, with evaluation paintIn [7] more general examples of such
modules were constructed: in particular, for any pair of complex numherswe have an
evaluation Vermamodull » (z). Ithas aweightdecompositidd, = ©72,Ma[A—2/], with
one-dimensional weight spacés, []. The action of thel-operator is described explicitly
in[7]. Also, we have a notion of tensor products of modules &gf(sl>). The main examples
considered in this paper will be tensor produits, (z1) ® - - - ® My, (z,,) of evaluation Verma
modules and some of their subquotients.

It will be convenient here to consider more gendradperators obeying the relations. So
we define dunctional modul®ver E. , (si,) to be given by a pai(W, L) whereW is a space
of complex-valued functions on a certain set &nacts on it as multiplication by a function,
andL(z, ») is a meromorphic function of andx acting as a difference operator ¥ngx W,
commuting withz ® 1 + 1® h, and obeying the relations (8). An example of such functional
modules is provided by the ‘universal evaluation modules’ of fi7dcts by multiplication by
a continuous variable. Evaluation Verma modules are obtained by restricting the range of this
continuous variable to a discrete set.

For any module or functional modul& over E; ,(sl2), we define the associated
operator algebra, an algebra of operators on the spacé/Buof meromorphic functions
of » € C with values inW. It is generated by:, acting on the values, and operators
a(z), b(z), c(z),d(z). Namely, letL(z) € End(V ® Fun(W)) be the operator defined by
(L A =Lz, V(v ® f(A—2nw)) if hv = pv. View L(z) as a 2x 2 matrix with
entries in EndFun(W)):

L) ([l] ® f)=e[l]l @ a@) f +e[-1] @ c(2) f
L@)(e[-1]® f) =e[l] @ b2) f +e[-1] ®@d(2) f.

The relations obeyed by these operators are described in detail in [7] (where the operators are
denoted byi(z), b(z) and so on).
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To each module we associate a central element of the operator algebra. It is given by the
guantum determinant [7]
o(%)

Det(z) = m(a(z +21n)d(z) — c(z + 2n)b(2)).

3.2. A class of representations by difference operators

Let z1,...,z, € C be distinct points andA1,..., A, € Zxo. Let us introduce
difference operators acting on functions of+ 1 complex variables\, xi, ..., x,. Let
(Tx(jf)()"v-xlv-"sxn) = f()"v-xlv-~~sxi +a, '-'sxn) and(T}\af)()"v-xlv ~~-»-xn) = f()“ +
a,xi, ..., x,). The steps will always be+25. Let

A_(Z)ZHQ(Z—zﬁAim and A+(Z)=l_[9(Z—Zi —Ain).
i=1 i=1
The functionsA, (z = —x;), considered as multiplication operators, will be denoted simply
by Ay (—x;). We also set = )", (x; +z;).
With these conventions, we define:

0O+ 31 (u+z+Am)

-2y
T
(1) »

a@z) =[0G +x)
i=1

. oA+ z+x;) 0(z+x;) o N—2nt2n
b(Z)— ; 9()\4) g@(xi—xj)A+( xt)Txi TA

"L O(—Atz+x —2s) 0(z+x;) -
T A_(=x))TH ="
c(2) ; 6(L) g 00 —x;) (=x) T,

Det(z) = [ [0z — 2z — Aim)0(z — 2 + Ain + 21).
i=1

Theorem 3.1. The difference operatois(z), b(z), c¢(z) together withd(z) defined implicitly
by the determinant relation
O(A — 2nh
a(z +2n)d(z) — c(z + 27)b(z) = % Det(z)

obey the relations of the elliptic quantum group (8) with= — >".(x; + z;).

Example. If n = 1, the generators act on functions of two variablasi, and 4 acts as
—x1 — z1. If we introduce a new variable = —n~1(x1 + z1), So that the generatak acts
by multiplication byi, we obtain a representation on functions/afi. The action of the
generators is given by the difference operators:

(L —nh+ A1n)

a()v(h, ) =0(z —z1 — T)]’l)TU(}l, A —2n)
b(z)v(h, 1) = e Ze_(/\z)l - nh)e(—nh + A)v(h +2, 1+ 21)
c@uih, ) =~ O 1) 6 ok + Aot — 2, 5 — 2n)
Ao, 2) = 0z — 23 + iy EEZ =B o,

o)
This is, up to normalization, the ‘universal evaluation module’ of [7], section 9.
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Proof of theorem 3.1.The proof consists of a straightforward verification of the 16 relations.
Let us give an example: one relation is
0(z — w)0(A +2n) 0(z—w—21)0(2n)
b(w) = b + b(2).
a@bw) = G ey MO G e — ey P
This identity is verified by looking at each summandigt) and b(w) separately. The
corresponding equation to one such summand typically looks like

OO+ 3 (i + i+ Aim)O O+ w + xi — 2)
9@+x“<IIQ&+X”> 606 — 21)

i#k
O(w + x;) B D)
% (g 0(x — x;)>A+( Xk)Txk '
0@ —w)H+2n) OO +w +xp) < O(w + x;) )
S 0z—w=2nOK) OO ITMm—m)

i#k

O(z+x, — 2O+ D11 (x; + 7 + Aim))
0(z+x; A

(o) oG+ 20

+ﬂ&—w—AWQm9@+ZLﬂM+a+AmDMw+mwiImw+M0
0z —w — 270N 0(0)

O(z+x;) \O(z+x+A—2n)
Xaﬁmm—m) 00. — 2n)
By taking into account that each summand of the above equation involves a factor
O(z+x)0(w+x;)\ O+ (x;i +2z; + Ain))
<,l;£ 0 (xx — x;) > 6(A)
the task reduces to verifying
O +w+x;, — 2n) 0@ —w)i(h+w+x)0(z+x; — 2n)
O(r — 2n) - 0(z —w — 2n)0(L)
+6’(1 —w — 02O (w +x)0 (A +z +x; — 2n)
0(z —w — 20)0(L)O (A — 21)
which we write in the form
filz,w, &) = fa(z, w, 1) + f3(z, w, 2).
This identity is proved in two steps. First, one shows that the functiagasw, A),i = 1, 2, 3,
transform in the same way under A+1, . — A+z7. The transformation laws thus obtained
are the following:
fiz,w, A+ 1) = fi(z, w, A)
filz,w,A+1) = e‘z”i(wm)ﬁ(z, w, A)
fori =1, 2, 3. The second step is to show that the above relation holds for the residues of the
functionsf; (z, w, 1). Here, one has to show that the identity holdsXfet 2 andi = 0. For
A = 0 one obtains
0(z — w)f(w +x,)0(z + xx — 21) + 0(z — w)0(2n)O(w +x;)0(z + x, — 2n) _
0(z —w — 2n) 0(—2n)0(z — w — 2n)
whereas the. = 2y residue yields

H(=x) T

ik

Av(=x) T2

0(z +xi)

0

0(z +x)f(w +x) = zg —— EZ;ZEEZ;Q(”’ 300+ xp).
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This proves [7], paragraph 3, relation 2. The other relations are proved in a similar but often
more intricate fashion.

One identity that is used is the vanishing of the sum of the residues-atx; — 25, —x;
of the function

02s+x; +v+2n) ﬁ O(v—z1—ANO(W—z1+ A +2n)

T = = v v 2 O +x)6 v+ +2n)

=1
a consequence of the double periodicfigy + 1) = f(v+ 1) = f(v).

Also, some of the more complicated relations, sucl@¥d(w) = d(w)d(z) turn out to
be consequences of the simpler relations and the fact that the determinant is centrall

Remark. This is the difference elliptic analogue of formulae that have appeared in the
literature. In the rational difference and differential case such a formula has been written
by Sklyanin [10]. A trigonometric difference version appears in Tarasov and Varchenko [12].

3.3. Restrictions

The linear difference operators defined in the previous sections act on meromorphic functions
of complex variables, x1, ..., x,. Tocompare these operators with evaluation modules of the
elliptic quantum groups and with transfer matrices of IRF models, we have to restrict their action
to the space of meromorphic functions defined on submanifol@$df The conditions for a
difference operatok with meromorphic coefficients to be defined on meromorphic functions
on a submanifold are that the value at a genesice S of X f(x) is well defined (i.e. there
are no poles at generic points 8f and is only a function of the values g¢f at points ofS.
Equivalently, a difference operatar can be restricted t6 if it maps functions vanishing on
S to functions vanishing o. The restriction is then identified with the induced action on the
guotient by the function vanishing ¢h

These conditions are fulfilled in the following situations.

(1) Restriction to discrete values of. We assume that, n are generic and that the; are
non-negative integers. We takdo be the set

SO= {()"axla "-7-xl‘l) € (C’1+l| _'xi :Zi +}7(Al _Zmi)ami = 07 17 "-’Aia

i=1...,n}
Since the steps in the difference operators are by multiples)pft2s clear that one
can restrict the action af(z), ..., d(z) to functions on subsets given by conditions

x; € a; + 2nZ, for generica;, n. The genericity condition om;, n is that the poles
atx; —x; modI of the coefficients of the difference operators are never on the subset.
What we have to check is that the restriction to these finite sets of values iowell
defined. Since only(z), c(z) shift the value ofy;, it is sufficient to consider these two
operators. For a functiofi(r, x1, ..., x,), the value at-x; = z; + nA; of b(z) f appears
to depend on the value ¢f at —x; + 2n = z; + nA; + 2, which is not inSp, but in fact
it does not, since the coefficient_(—x;) vanishes there. Similarly(z) is well defined
on So.
For this restrictiork has discrete spectrum. It will be used to compare our representation
with tensor products of irreducible representations.

(2) Restriction tor = nh. Let S be the set

S1= {(A,xl, == +z,-)}.
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Thenb(z), c(z) can be restricted to functions ¢h. Indeed, ifu is a function vanishing

on Sy, thenijz” Tf"u still vanishes ors;. The denominators of the coefficientsiat)

do not vanish at generic points 8f. Thusb(z)u = 0 if u vanishes or;. The same

reasoning applies to(z).

This restriction is needed, as we shall see, to construct commuting transfer matrices.
(3) IRF restriction Consider the restriction df(z), c(z) on functions onS = Sg N ;. If

z; andn are generic, the only possible pole 8nn the coefficients of these differential

operators comes from the denominatigk). This denominator does not vanish if we

assume, for instance, that the are all odd.

HereS is finite, so that the restriction is to a finite-dimensional space of functions, which

will be identified with the space of states of an IRF model.

3.4. Commuting difference operators

One of the main properties @&f-matrices to statistical mechanics is tliabperators obeying
quantum group relations give rise to commuting transfer matriges.tin [10] it is noticed
that more generally one can consider(fK ® 1)L) for some endomorphism &f such that
K ® K commutes with theR-matrices.

In our dynamical case it is known that the traaés) + d(z) commute for different values
of z when acting on the zero weight space of a module @gf(sl2). Another possibility
to obtain commuting operators is to take tinsted transfer matrixry (K ® 1)L) with a
suitablek .

Proposition 3.2. For any 9 € C, the operatorsT' (z) = b(z) + ¥c(z), z € C, restricted to
functions on the submanifol§h given by the equation + Y"'_,x; + > '_;z; = 0, form a
commuting family.

This proposition can be proved directly or by the following general argument.

It is first of all sufficient to consider the case= 1 since the other cases are obtained by
conjugating the operator by the multiplication by an exponential function dhen we may
write T'(z) as

T() = Y trypy(K ® 1Lz, )T, ™
n==x1

0 1
(2 1),
The partial trace ¥,y : EndV ® W) — End(W) is the homomorphism such that if

a € End(V), b € EndW), then ti,(a ® b) = > €' (ae;)b for any basis(e;) of V[u]
with ¢’ € V* defined bye’ (¢;) = §;; ande’ (w) = 0 forw € V[v], v # u. We have

K ® KR(z,)) = R(z, -\)K @ K. (9)
We then write theRL L relations in the form
RI2(z —w, » —2ph) LY (2, WLP (w, » — 2ph YR (z — w, 1)1
= LPw, LY (z, 2 — 2nh?)
multiply both sides by K ® K)1? from the left, and take the partial trace over a weight space
(V ® V)[u]. Using (9), we obtain
trvevyg (R (2 — w, —A + 2nh) KV KD LD (2, )LD (w, A — 2nhD)RI? (z — w, 1))
= trvevpg KPL? w, HKYLD (7, 2 — 29h@).

with
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The next step is to use the cyclicity of the trace to bring the Rrstatrix to the right. For this
we need the commutation relationsiofvith the product in the trace. Since(’, 1 +h] =0
andh® KD = —_KOp® we see that

h tr(V®V)[u] (A(lZ)K(l)K(Z)L(l)L(Z)) — tr(V®V)[u] (A(12)K(1)K(2)L(1)L(2)) < (h+2u)
forany A € End(V ® V) commuting withz® + 1® . We then get

D e (KPKP LD @, HLP (w, & — 2phP)RWP (z — w, 1) TR™?
w

X(z — w, =+ 2n(h + 2u) T, 2™ = T(w)T (2).

If we then have a relatiomhu()) = Au()), and we apply the above equation itp we
may replaces in the left-hand side by./n — 21, and the R-matrices cancel, so that
T()T(w)=Tw)T (z).

3.5. Evaluation modules

Here we show that the restriction of the operatars, ¢, d of theorem 3.1 to functions on the
submanifoldsSy is essentially the tensor product of finite-dimensional irreducible evaluation
modules of [7].

Proposition 3.3. Suppose thay, z1, ..., z, are generic. Leta, b, c,d be the difference
operators defined in 3.2 restricted to functionsSarand letx (z) = [/, 6(z —z; — nA;) L.
Thena(z) = k(2)a(z), ...,d(z) = k(z)d(z) define ank; ,(slz) module isomorphic to the
tensor productL ,,(z1 — ) ® - - - ® Ly, (z, — n) of irreducible evaluation modules.

Let W be the space of functions ¢h It is a vector space over the field of meromorphic
functions ofa of dimension[[_,(A; + 1). To prove this proposition we have to identify a
highestweight vectorin, i.e. an eigenvector af(z), d(z) andh killed by ¢(z). The eigenvalues
(A(z, M), D(z, M), A) of (a(z), d(z), h) determine then by [7] uniquely an irreducible module
up to isomorphism.

Let 5,(x;) € W be the delta function at; = a: 8,(x;) = 1if x;, = a, 8,(x;) = 0, if
x; # a. The highest weight vector may be taken as the product of delta functions

n
Vhow. = l_[ a—z;—A;n(xi)-
i=1

This function is indeed annihilated ky(z) andhvy,,, = Y_ A;vs,.. Moreover,v,,,. is an

eigenvector fou(z) andd(z):

o0 — Z:'lzl Ain + Z?:l Aim) v
o)

a@vpw. =[0G —2z — Ain)
i=1

n
=[]0G -z — Ao
i=1

Thusa(z)vy.w. = Az, M) vy, With A(z, 1) = [[/_10(z — z; — A;n). Similaryd (2)vy... =

D(z, M)y, With eigenvalue

O — 20371 )
o(A)

OG- =203 7 A) 1—[ 0(z —zi — Ain — 20)0(z — z; + Ain)

- 00 0(z—z — A — 21) '

D(z, 1) = Det(z — 2n, M)A~ (z — 2y, A + 21)

i=1
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Thus the eigenvalues 6i(z), d(z), h) are(1, D(z, 1), 3_ A;) with

O —2n "1 A)) ﬁ 0(z—zi + Ain)
O (1) 0(z —zi — Aim)

which indeed reproduces the highest weight defined in [7] p 750.

D(z,») =
i=1

3.6. Separation of variables: continuous case

In this section we find an analogue of the results of 2.4, 2.5. We consider the continuous case,
in which the variables; take arbitrary complex values. Then the eigenvalue problem for a
functionu on Sy is T (2)u(x) = €(z)u(x), with

0=zt x) 7 0@ —x))
T(_Z)u(-xla LR xﬂ) - ; 9()\‘) g e(xl — x])

n
X(Hé(xi taetnAPuxe, .o X — 20,00 x)
k=1

+l—[9(xi +zi —nADu(xg, ..., x; +2n, ..., xn)>
k=1
where we view a function on S; as a function ok, ..., x, by settingh = — 3 "(x; +z;).
From this formula it is clear thaf (z)u(x) is an entire holomorphic function af with
theta function behaviour asis translated by elements of the lattife= Z + tZ. It follows
that a necessary condition efz) to be an eigenvalue is thatbelong to the spac®, (xo)
of theta functions of order with charactery, : ' — C* (see the appendix) given by
xo(r +s7) = (=1)""*) exp(2i Y z;). This means that is an entire function obeying

€(z+1) = xo(De(z) €(z+71) = xo(r)e ™" @ e (z).

The method of separation of variables consists in looking for common eigenfuneiions
in the factorized formu(x) = []'_; Q(x;). Settingz = —x; in the eigenvalue problem
(T (z) —€(z))u = 0 we see that a necessary condition is fhat obey the difference equation

A+()Q(x —2n) + A_(x) Q(x + 2n) = e(—x) Q(x) Axr(x) = 1_[9(x + 2z £ nAg).
k=1

(10)

As explained in the appendix, this difference equation haslgtic polynomial solutioni.e.
a solution of the form

m

Q) =e" [To0r —wy) (11)
k=1

if " A; is an even integeri2. Such a solution may be constructed by the Bethe ansatz.

Proposition 3.4. Suppose thatn; +--- + A, = 2m for some positive integen, and let

(a, w1, ..., w,) be asolution of the system of Bethe ansatz equations
Ac(w) ] 0w —w; —2n) =" A_(wy) [ ] 0wi —w; +2n) i=1....m (12
Jij# Jij#

such thatw; # w; modT, (i # j). Thenu = [] Q(x;) with Q(x) = €~ [}, 0(x — wy) is
a common eigenfunction @f(z).
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Proof. This is a rephrasing of the first part of proposition A.4. a

Definition. An eigenfunction of the form of proposition 3.4 is called a Bethe eigenfunction.

Conversely, let us suppose thatA; = 2m, m € Z.o and show that all eigenfunctions
in a suitable class are of this form. Let, for a charagterl’ — C*, H,,(x) be the space of
meromorphic functions of complex variablesy, ..., x,, such that

oo, x;+1,..) = xQu(...,x;,...)
ST @GAD ).

u(G...,x;+t,...)=x(r)€
The following result can then easily be verified using the behaviour of the coefficients of the
difference operator (z).

Lemma 3.5. For any charactery and anyz € C, T (z) preserves,, (x).

Let for a characteg € I'*, X(x) C ©,,(xo) be the set of functions so that there exists
aholomorphiccommon eigenfunction € H,,(x) of T'(z), z € C, with eigenvalue: (z).

Theorem 3.6. Suppose thah; +- - -+ A, = 2m for some positive integett. Thene € X(x)
if and only if there is an eigenfunction(xy, ..., x,) of the formu(x1, ..., x,) = []/_; O(x;)
with eigenvalue:, such thatQ(x) = e []/L, 6(x — w;) for some solutior(a, w1, ..., wy)
of the Bethe ansatz equations with

X(l) = (—l)me“ X(-L—) — (_1)mear+27ri2wk.

Proof. It remains to show that iE € X(x) then this eigenvalue corresponds to a Bethe
eigenfunction.

Suppose that € X(x) andu is a holomorphic eigenfunction if,,(x) with this
eigenvalue. Then, for ea¢hthe functioru viewed as a function of; belongs ta®,,(x). By

settingz = —x; in the eigenvalue equatich(z)u(x1, ..., x,) = €(2Q)u(x, ..., x,), we see
thatu is a solution of the separated equation
Av(xpu(o..,xi —2n, .. )+t A_(xpu(...,x; +2n,...) = e(—x)u(x, ..., x,). (13)

Here Ay (x) = [];_;0(x + zx = nAy). Consider the variables;, j # i as fixed generic
parameters. Then
Ox) =u(x1, ..., Xi—1, X, Xij+1, . . -, Xn)

is a non-trivial solution of (10). By the factorization theorem for the theta function (see the
appendix), such a solution is, up to normalization, of the fanw) = e~ ]_[;f’zle(x —wj),
and is related taz andw; by the equations stated in the theorem. Setting: w; in (13)
gives then the Bethe ansatz equations. a

3.7. Semiclassical limit

The difference operatdi(z) degenerates to the differential operafar) of section 2 expressed
in the separated variables. More precisely,1€t) = T,(z; z1, - .., z») act on an analytic
functionu(xy, ..., x,). Then

Ty 21, zu =[0Gk —2)
k=1

x |:u + 2772<S(—z; 21 —Zn) — 3 Z ck(z — Zk))u + 0(772)}
k=1



8016 G Felder and A Schorr

where S(z; z1, ..., z,) is the differential operator of section 2 expressed in terms of the
separated variables, which are here called;. This formula may be proved by expanding
T,(z)u in a Taylor series im up to second order, and comparing the result with the expression
for S given by the interpolation formula in section 2.3.

4. IRF models with antiperiodic boundary conditions

We consider here the case whekg = --- = A, = 1 and show that the commuting
transfer matriced'(z) restricted to functions oy N S; are transfer matrices of IRF models

with antiperiodic boundary conditions. The IRF models (see [1-3]) of statistical mechanics
are two-dimensional lattice models in which the configurations over which one sums in the
partition function associate an element, the height, of a certain set to each pair of neighbouring
points. The weight of a configuration is the product of local Boltzmann weights associated
to each ‘face’, or square formed by four neighbouring points. The local Boltzmann weight
W(a, b, ¢, d|z) depends on the heights b, ¢, d at the neighbouring points and the spectral
parameter; € C. The spectral parameter can be any fixed number, but more generally, in
the inhomogeneous model, one associates a spectral parameter to each row and column of
faces in the lattice and takedo be the difference between the row parameter and the column
parameter. In the simplest, case the heights are real numbers and the local Boltzmann
weights are related to matrix elements of our dynamitahatrix by

R(z, . = —2nd)e[c — d] @ e[b — c] = Z Wi(c, b, a,d|z)e[b —a] ® e[a — d] (14)

wherec —d, b —c,b —a,a —d € {—1,1}. If the latter conditions are not fulfilled, then
W = 0t.

As shown in [8], the transfer matrix(z) + d(z) on the zero-weight subspace of the tensor
product of two-dimensional representations is then identified with the row-to-row transfer
matrix of the IRF model with periodic boundary conditions. Here we show that a similar
computation applied to the twisted transfer matix) + c(z) gives the row-to-row transfer
matrix of the IRF model with antiperiodic boundary conditions.

The formulae are as follows: 18t(z1) ® - ® V (z,,) be a tensor product of two-dimensional
evaluation modules and assume thé odd. Then thd.-operator for this module is

L(z, %) = R® <z —zh=21y h“)) ROV (@ — 21,0 = 20h )R (2 — 2, 1),
i=2

Then the twisted transfer matrices, see section 3.4, acting on funatidnsestricted to the

submanifold given by the equation= nh form a commuting family parametrized by the

spectral parameter. Let us call these transfer matflzggz). The restriction means that

Tirr(2) preserves functions(i) of the formu (L) = ZM 8pu(Mulp] for some vectors[u] of

weight . Hered, (b) is one ifa = b and zero otherwise. The restriction to this subspace of

function of A is well defined ifn is odd, as the singularities of tHeoperator are at € 2nZ

whereas. takes valuegu, whereu, the weight of a vector i®V (z;), is an odd number if

is odd. So ify is generic, there are no singularities at this points. Explicitly,

Tire(z) = b(z) +&(2) = Y _trif), KOR® (z —z, A =27 h“))
n i=2

Tt The normalization chosen hereis so that, [ +1, [ +2, [ +1|z) = 1rather than the more commértt —21)/6(2n).
Also, our spectral parameter is normalized in a different way than in the literature.
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n
x R (z —z2, A — 21 Zh(”) ROV (z =z, 4,0 — 29p™)
i=3

XR(On)(Z -z X)TA_ZW“ (15)

The product ofR-matrices acts oY @ (®!_,V), where the index0) refers to action on the
first factor of the tensor product and’trdenotes the trace over the first factor. The subsequent
factors are numbered accordingly from 1nto

The twisted transfer matrices are defined o' aliPnensional space. This space has a
basiss, s, (M)ef[o1] ® --- ® e[o,] with o; € {1, —1}. Itis convenient to write this basis in

with

terms of antiperiodic paths: let fen, ..., a,,a,+1 € Z +n/2, such thata; — a;+1] = 1
i=1,...,n),anda,+1 = —a1
|als ceey an+1) = 572nan+1()")e[al - 32] ® T ® e[an - an+1]~
Proposition 4.1. For any antiperiodic pathas, .. ., a,, a,+1 = —az), we have
Tre@las ....ama) = Y [ [ W@ ai bibisa)  |ba, ... bys). (16)

b1,....by,byr1=—b1 i=1

This expression is, by definition, the transfer matrix of IRF models with antiperiodic
boundary conditions. The partition function for the IRF model with antiperiodic boundary
conditions in one direction is thenf(w3) ... T (w,). Thew; are the spectral parameters
associated to the rows, and the; are the spectral parameters associated te t@umns.

Proof of the proposition. Let e*[1], e*[—1] be the dual basis tg1], e[ —1]:

n
Tre(2)lay, ..., au+1) = Ztr(‘?[)u] KOROY (z — 21, A —2n Zh(’)>
n i=2

n

x R(©2 (Z — 22, A — 21 Z h(i)> . R(O")(z — Zny M8 2n(apes—wy (M)elar — az]
=3

=
n
® @ elay —apa] = ) eV [u]KORP (z — =2y Zh(”>
m i=2

ROz — 2z, M8 —2n (a1~ Me ] ® elar — az]
Q- Qela, — ay+] = Z ¢ [ae1 — busr] K@ ROD

byl
n .
X (z — 21, A =21 Z h(l)) RO (2 — 2, M8 2pp s W)@t — byl
i—2

Relar —a] ® -+~ @ efa, —apa]l = Y P [a1 — ba] KO RO
bn+1,hn

x (z —z.A—21 Zh“’) ROV (@ =20, — 20h™)
i=2

X W(an+lv Aay, bna bn+l)872nbu+1(}‘)e(0) [an - bn] & e[al - aZ]

R ® 6‘[an—l - an] by e[bn - bn+l]
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n
= .= Z e(o)*[an+1 _ bn+l]K(0)R(01) <Z —z,A—2n Z h(i))

brotob i=2
.. ROD (z —zuh =20 h‘”) [ 20W (@1 s @njs ba—js Duea-)
j=i
X820 (Wela; — bi] ® elar — az] ® e[ai—1 — a;] ® e[bi — bii]
Q- ® e[bn - bn+1] == Z e(O)*[an+l - bn+1]K(O) H?:l

X W (@i+1, ai, by, bis1)8_2yp,., (M @[ar — b1] ® e[b1 — b]
® - @elby— byl = Y, e[a —bunle®[—a1+b1] & e[br — b7]

b/x+1 ~~~~~ bl
® - ® e[b, — by+1]6_2yp,., MIT_1 W (aj+1, a;, b, biv1).
By evaluating the linear forma*[a,+1 — b,+1] we see that only the terms with,.; = —b;
contribute to the sum. The proof is complete. O

4.1. Separation of variables for IRF models

Let us consider the eigenvalue problem for the transfer matrix restrictefy to S; for
A1 = --- = A, = 1 andrn odd. The eigenfunction may be viewed as a function
u(xy, ..., x,) defined forx; € {—z; —n,—z; + n}, 1 < i < n. The eigenvalue problem
readsT (z)u(x) = €(z)u(x), with
Q0. —z+x;) 17 0 —x))
T(— e X)) =
(—Duxs, ..., x) =) 0 ]‘[e(xi =

i=1

J#i

X(He(xi‘*Zk‘H?Ak)M(xl,---,xi —2n, -+, Xn)

k=1
+| 100G + 2z = nADu(xa, ..., x; +2n, .. .,xn)) (17)
k=1
wherexr = — > 77 (o + 2¢).
Theorem 4.2.Suppose thatn\; = --- = A, = 1 withn odd,n ¢ I, and thatz; #

z;+2np€ modI fori # jand{¢ = 0,+1. LetT(z) = b(z) + c(z) be the transfer matrix
restricted to the2"-dimensional space of functions &g N S;. Then a functiore(z) is a
common eigenvalue of the transfer matri@gs), z € C, if and only if

(i) € € ©,(x) with x(1) = (—1)", x(r) = (-1"e*"' 2% and
(i) € obeys the quadratic relations

€(zi —me(zi+n) =| |0 —z +2n)0(zk — 2 — 2n) i=1...,n. (18)
k=1
To prove this theorem, le§ = x!_;{—z; — n, —z; + n}. Let us first assume that(x),
x € S is a common eigenfunction df (z) with eigenvalues(z). In particularu does not
vanish identically onS. From the transformation properties Bfz) under shifts of; by I'
we see that(z) has to belong t®, (x). Then setting: = —x; in the eigenvector equation
T (2)u(x) = €(z)u(x), we get the separated equation

[T + 2+ mT 2 u(x) +0(xi + 26 = T2 u(x) = e(—xu(x).  (19)
k=1
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Inserting the two values of; yields

[10Ge —zi+2nuxs, ..., —zi =0, ox) = €z = Mus, ..., =2+ 17,0, X)

S (20)
[10Ge =z = 2muter, ... =z +n, o x) = €@ muCes, .o =2 =1, %),

k=1

By multiplying these two equations we see thatust obey the identity (18), provided we can
prove that, for at least one choicexf, the product

u('x].?"'?_zi_n7"'V‘Xn)u('xl’"'7_Zi+n7"'$'xﬂ)

does not vanish. This follows from the fact thais not identically zero, so that at least one
factor of this product is non-zero, and that the product of theta functions on the left-hand side
of (20) is not zero with our assumption on the so that the other factor is also non-zero.

We have thus shown that a necessary condition for a funetignto be a common
eigenvalue is that is a theta funtion obeying the quadratic relations (18).

Conversely, let us suppose tlkabbeys (18). Then, for evely the system of equations

l_[9(x tutm O —2n) +0(x + 2z — ) Q(x +2n) = e(—x) Q(x) x=-=zi£n
k=1

admits a non-trivial solutio®; (x). It follows thatu(x) = []'_; Q:(x;) obeys (19). Thus, for
anyx € S, (T (z) —€(z))u(x), viewed as a function of is a theta function i®, (x) vanishing
atn distinct points—x1, ..., —x,. As explained in the appendix, this implies that that either
the function vanishes identically e¥ Y x; = > z;. Since forx € §, > x; is—>_z; plus an
oddmultiple ofn, the latter alternative cannot hold. Thuss an eigenfuntion with eigenvalue
€. The theorem is proven.

5. Conclusions

In this paper we have studied integrable models associated to elliptic curves by Sklyanin’s
method of separation of variables. We have shown how in the elliptic version of the
Gaudin model, previously considered in [4], this method implies the completeness of Bethe
eigenfunction in Verma modules, in the sense that for every eigenvalue one has a Bethe
eigenfunction (although in the case of degenerate eigenvalues one cannot exclude the existence
of additional eigenfunction not of the Bethe type).

In the difference case, the analogue of the transfer matrix in the separated variables was
shown to be a twisted transfer matrix associated to a representatiy, 6fl) by difference
operators. The eigenvalue problem can be posed in two different cases. In the continuous
case, the variables are assumed to be complex and one asks for eigenfunctions with theta
functions properties, as one does in the differential case. These eigenfunctions are of the
Bethe ansatz type. In the discrete case, the variables are assumed to take values in a finite set.
The eigenvalue problem can still be solved by separating variables yielding eigenfunctions of
the (inhomogeneous) row-to-row transfer matrix of IRF models with antiperiodic boundary
conditions. In both cases one has a completeness result.

Let us conclude by mentioning some open questions. In the difference case one has the
transfer matrix in the ‘separated variables’. Is there a ‘quantum Radon transform’ as in the
differential case, which maps the transfer matrix of the IRF model with periodic boundary
conditions to this transfer matrix? Is there an analogue of the equivalence between the local
problem and the global problem of [12] in the elliptic case?
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Appendix. Elliptic polynomials

A.1. Theta functions

Letimz > Oand seyy = €7, LetI be the latticéZ +tZ andI'™* ~ (C*)? the group of group
homomorphismg§® — C*. Let¢ be the homomorphism : x +— %(In x() —tIn ()
(or, more invariantly,Z% (w1In x(w2) — w2 In x (wy)), for any oriented basis;, w, of I') from
I'* to the elliptic curvekE = C/T.

Fory € I'* let®,(x) be the space of theta functions of lekelnd charactey . It consists
of entire holomorphic functiong (z) such thatf (z + r + st) = x(r + s7) exp(—mik(s’t +
2s57)) f(z) forallr +st e T.

The dimension 00, (x) is zero ifk < 0. Itisk if k > 1. The dimension 0B®y(x) is one
if ¢(x) = 0 and vanishes otherwise.

We have the following unique factorization result.

Proposition A.1. The function ot € C

k
fla,w;z) =€ 1_[9(2 —wj)
j=1
belongs ta® (x), With x (r +s7) = (—1)rkgrats@r+2riyw) - Eyery function ird; (x) is of
the formC- f (a, w; z) for some constan® and this representation is unique up to permutation
of thew; if one requires they; to be in the fundamental domain = {x + yt|x, y € [0, 1)}.

Proof. It follows from the transformation properties of theta functions that the number of
zeros(2zi)~1 faF dIng, counted with multiplicities, irF’ of a theta functiory € ®,(x) isk.

If wy, ..., w; denote the zeros @ftheng(z)/f (a, w; z) is doubly periodic and regular, thus
constant. Uniqueness follows from the fact thas uniquely determined by the zeras and

the charactey. a

Corollary A.2. LetE be the elliptic curveC/T", and, fork = 1,2, ..., SX(E) = E/S; be its
kth symmetric power. The m&l{®,(x)) — S¥(E) sending a function to the set of its zeros
modulal’, isinjective. Itsimage consists of clasges, . . ., w] such thagj wj = ¢(x)+ks,
wheres is the image inE of (1 +1)/2.

A.2. Interpolation

Theorem A.3. Supposey, ..., z; € C are pairwise distinct modul® and x € I'* is such
thath.‘=1 zi Z ¢(x) +kd modT'. Then for anyy, ..., y € C there exists a unique function
f € O(x) suchthatf(z;) = y; foralli =1,...,k.

The interpolation formula giving is

f) = i)’jez”i“(z—me(z —zj*b) 1—[ 0(z —z1)

j=1 0(b) rizey 02 = )
Herea andb are such that the character of all terms in the sum are eqyaldo
_ 1 In x (D) k
T o T2
1 k 1+7
b=—(xInx@ —In + i —k
5 (@) (@) —Inx (@) ;z, 5
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for any choice of the branch of the logarithm. The assumptiop ensures that ¢ I" so that
the denominato (») does not vanish.

The function is unique since the difference of any two is a theta function vanishing at
points. By corollary A.2, with our assumption ¢gn it must vanish identically.

A.3. Difference equations

Consider the following problem arising in integrable models. GivenC — I" and functions
A+(2) € Or(x+), A_(2) € Or(x-), find e(z) such that the difference equation

A+(2)Qz —y)+A_ ()0 +y) =€(2)Q(2) (21)
has a non-trivial solutio®(z) in some®,, (x).
A necessary condition is that all terms are theta functions with the same character. So
has to be of levet and x.(1) = x_(1), x+(t)e¥" "™ = x_(r)e 2"y = character of.
A pair (e, Q) of theta functions (withQ non-trivial) obeying the difference equation (21)
will be called an elliptic polynomial solution of (21).

Proposition. Supposel . (z) € O (x+) With .+ (r+st) = x_(r+st)e*" 7" forallr+st € T

and some positive integer. If a, wq, ..., w,, are solutions of the system of equations
Ac(wy) [T 0w —w; —y) =7 A_(wy) [] 0w —w; +y) i=1....,m (22
Jij#i Jij#i

such thatw; # w; modT forall i # j, then the functions

0@)=¢€"]10(z—w;) (23)
j=1
and
A —y)+A_ +
(@) = +(2)0@—y) (2)Q(z+y) (24)
0(2)

form an elliptic polynomial solution of (21). Conversely(df Q) is an elliptic polynomial
solution of (21), then there exists a solutioyws, . . ., w,, of the system (22) such théis

of the form (23) (up to a multiplicative constant) ands given by (24).

Proof. Let O be the function defined in (23). The ratio (24) obeys the transformation property
of a theta function, but may be singular at the zarpsf Q.
Theith equation inthe system or, more precisely, the equation equivalentjodt i€ —I":

Acwpe T]ow; —w; —y) + A_(w)e [ [0 —w; +y) =0
j=1 j=1
is the condition that the left-hand side of the (21) vanishes afhus, ifa, wy, ..., w, obey
the system of equations, then the quotieof this left-hand side by (z) is regular atw; and
thus everywhere an@, Q) is an elliptic polynomial solution.

Suppose now thak, Q) is an elliptic polynomial solution. By proposition A.D can be
written in the form (23) if we normalize it properly. The points are the zeros (moduld) of
0. Then the left-hand side of the difference equation vanishas ab thew; are a solution
of (22). O

Remark. The system of equations is usually written in the form
l—[ Owi —wj = ¥) _ pay A-(wi)

= i=1...,m.
O(w; —w; +y) Ar(w;)

JLA
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