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Abstract. We extend Sklyanin’s method of separation of variables to quantum integrable models
associated to elliptic curves. After reviewing the differential case, the elliptic Gaudin model studied
by Enriquez, Feigin and Rubtsov, we consider the difference case and find a class of transfer matrices
whose eigenvalue problem can be solved by separation of variables. These transfer matrices are
associated to representations of the elliptic quantum groupEτ,η(sl2) by difference operators. One
model of statistical mechanics to which this method applies is the interaction-round-a-face model
with antiperiodic boundary conditions. The eigenvalues of the transfer matrix are given as solutions
of a system of quadratic equations in a space of higher-order theta functions.

1. Introduction

The method of separation of variables in integrable lattice models, proposed by Sklyanin, is
a method to find eigenvalues and eigenvectors of transfer matrices. It is an alternative to the
Bethe ansatz and works in some situations where the Bethe ansatz does not, and gives an insight
in the completeness of the Bethe ansatz. The method is closely related to Baxter’s method
(ch 9 of [2]), and in fact the eigenvalue problem in the separated variables (in the difference
case) becomes the Baxter difference equation. In the Gaudin model, one of the simplest
quantum integrable systems, this method relates the problem of finding common eigenvectors
of Gaudin Hamiltonians to the problem of finding differential equations on the Riemann sphere
with regular singular points whose monodromy is trivial. As noticed by Feigin and Frenkel [9],
this is a special case of the Beilinson–Drinfeld ‘geometric Langlands correspondence’ relating
certain local systems on a complex curve toD-modules on moduli spaces of principal bundles
on the curve.

Both for quantum integrable models and for the connection to the Langlands program, it
may be interesting to extend the method of separation of variables to more general models.

The class of quantum integrable systems (families of commuting operators) one considers
in this context arise in different classes. There are the differential models, such as the
quantization of the Hitchin systems. They are given by families of commuting differential
operators and are associated to complex curves. The Gaudin operators are the operators
associated to the Riemann sphere. More generally, one considers difference orq-deformed
models, such as the six-vertex model, which degenerate to the differential model when the
parameterq tends to one. These models appear in three sorts: rational, trigonometric and
elliptic, depending on the type of coefficients in the commuting operators.

From the point of view of representation theory, the differential models are related to Kac–
Moody Lie algebras, and theq-deformed models to (infinite-dimensional) quantum groups.
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We consider here models related tosl2. In the differential rational (genus zero) case
the separation of variables was considered by Sklyanin [10] and Frenkel [9]. A version of the
separation of variables for the genus-one differential case was considered by Enriquezet al [4],
who also made an explicit connection to the Langlands correspondance. Theq-deformed
rational and trigonometric case were studied by Sklyanin [10] and Tarasov–Varchenko [12].
The latter authors introduce the notion of a difference equation with regular singular points,
thus giving aq-version of the relation described above for Gaudin models.

Here we consider theq-deformed elliptic case. The class of difference operator we give
is both aq-deformation of the Enriquez–Feigin–Rubtsov differential operators and an elliptic
version of the operators studied by Tarasov–Varchenko. Common eigenfuncions may be
constructed by the method of separation of variables. Moreover, the commuting difference
operators we introduce can be restricted to functions on a finite subset of points. This restriction
turns out to give the commuting transfer matrices of interaction-round-a-face models with
antiperiodic boundary condition. This model provides an example of a model solvable by
separation of variables but not by Bethe ansatz. Other elliptic models, related to theXYZ

model, have recently been studied by the method of separation of variables by Sklyanin and
Takebe [11].

The algebraic structure at the origin of our constructions is the elliptic quantum group
Eτ,η(sl2). Indeed, the starting point is the construction of a representation of this quantum
group by difference operators which generalizes the ‘universal evaluation module’ of [7].

The paper is organized as follows. In section 2 we review the separation of variables in
the differential elliptic case. Most of this part is essentially taken from [4], but we add some
remarks on the Bethe ansatz and its completeness.

In section 3 we explain what is needed from the theory of elliptic quantum groups and
introduce a class of representations ofEτη(sl2) by difference operators and relate them to
known representations. Twisted commuting transfer matrices are then introduced and the
method of separation of variables is applied to construct (Bethe ansatz) eigenvectors.

In section 4 we consider the restriction of the transfer matrix associated to the tensor
product ofn fundamental representations to functions of a finite set of cardinality 2n, and show
that we obtain the transfer matrix of an interaction-round-a-face (IRF) model with antiperiodic
boundary conditions. The eigenvalues are then obtained as the solutions of a system ofn

quadratic equations in ann-dimensional space of theta functions of ordern.
In the appendix we give an account on ‘elliptic polynomials’, which are (twisted) theta

functions of ordern.

2. The differential case

Let us start by introducing a family of commuting differential operators associated to an elliptic
curve withn marked points andn highest weight representations ofsl2(C).

Let the elliptic curve beE = C/0 with 0 = Z+τZ and Imτ > 0. The marked points are
the projections ofn pointsz1, . . . , zn ∈ C, with zi 6= zj mod0 for i 6= j . The representations
areM31, . . . ,M3n where, for3 ∈ C,M3 denotes the Verma module (defined below in 2.1 of
highest weight3 of sl2(C).

Thus our parameters areτ, z1, . . . , zn,31, . . . , 3n.
Let θ(z) = −∑j∈Z exp(iπ(j + 1

2)
2τ + 2π i(j + 1

2)(z + 1
2)) be the odd Jacobi theta

function, and setσλ(z) = θ(λ−z)θ ′(0)
θ(z)θ(λ)

. This is the unique meromorphic function ofz regular on

C − 0, with a simple pole with residue one at 0, and such thatσλ(z + r + sτ ) = e2π isλσλ(z),
r, s ∈ Z.



Separation of variables for quantum integrable systems 8003

Let e = (01
00

)
, f = (00

10

)
, h = ( 1 0

0−1

)
be the standard generators ofsl2(C). Fora ∈ sl2(C)

let a(i) denote the action ofa on theith factor of the tensor productM = M31 ⊗ · · · ⊗M3n .
Introduce the following endomorphisms ofM depending onz, λ ∈ C:

h(z)=
n∑
i=1

θ ′(z− zi)
θ(z− zi) h

(i) eλ(z)=
n∑
i=1

σ−λ(z− zi)e(i) fλ(z)=
n∑
i=1

σλ(z− zi)f (i).

The family of commuting differential operators is then obtained by the following generating
function, which is an elliptic version of the generating function of Gaudin Hamiltonians [10].

Theorem 2.1.Let, for z ∈ C, S(z) be the differential operator acting on functions of one
complex variablesλ with values in the zero weight spaceM[0] = {v ∈ M,∑i h

(i)v = 0} of
M:

S(z) =
(
∂

∂λ
− 1

2
h(z)

)2

+ eλ(z)fλ(z) + fλ(z)eλ(z).

ThenS(z)S(w) = S(w)S(z).
One way of proving this theorem is to notice that it is a special case of the flatness of the

KZB connection (proposition 2 in [5]). The relation to the KZB connection is the following.
In the sl2(C) case, the KZB connection involves the differential operators (appearing in the
right-hand side of the KZB equations):

Hj = −h(j) ∂
∂λ

+
∑
k:k 6=j

1

2

θ ′(zj − zk)
θ(zj − zk) h

(j)h(k) + σλ(zj − zk)e(j)f (k) + σ−λ(zj − zk)f (j)e(k)

wherej = 1, . . . , n, and

H0 = ∂2

∂λ2
+

1

2

n∑
j,k=1

1

2
h(j)h(k)

θ ′′(zj − zk)
θ(zj − zk) − (e

(j)f (k) + f (j)e(k))
∂σλ(zj − zk)

∂λ
.

The fact that the connection is flat means in particular that these operators form a commuting
family when acting onM[0]-valued functions. The terms withj = k are understood as
the limit as the argumentzj − zk tends to zero. Soθ ′′(0)/θ(0) meansθ ′′′(0)/θ ′(0) and
(∂σλ/∂λ)(0) = (θ ′/θ)′(λ). Note that

∑n
j=1Hj vanishes onM[0]-valued functions. We

call the operatorsHj , j > 1 the elliptic Gaudin Hamiltonian andH0 the (generalized) Laḿe
Hamiltonian (it is the Laḿe operator ifn = 1).

The relation between these commuting operators andS(z) is as follows.

Proposition 2.2. Let† ζ̄ (z) = θ ′(z)/θ(z), ℘̄(z) = −ζ̄ ′(z). Then

S(z) =
n∑
k=1

ck

2
℘̄(z− zk) +

n∑
k=1

Hkζ̄ (z− zk) +H0

andcj is the Casimir valuecj = 1
23j(3j + 2).

The proof of this fact follows by noting thatS(z) is a meromorphic doubly periodic
function of z with at most double poles at the pointszj . By expandingS(z) in a Laurent
series up to the constant term at thez = zj , we find that the difference between left-hand side
and right-hand side is a differential operator whose coefficients are regular elliptic functions
vanishing at least at one point. Such an operator vanishes by Liouville’s theorem.

† The relation of these functions with the classical Weierstrassζ and℘ functionsζ(z) = 1
z

+
∑
(r,s)∈Z2−(0,0)

1
z+r+sτ −

1
r+sτ + z

(r+sτ )2
, ℘(z) = −ζ ′(z) is ζ(z) = ζ̄ (z) + 2η1z, ℘(z) = ℘̄(z)− 2η1, where 2η1 = θ ′′′(0)/3θ ′(0).
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The eigenvalue problem for common eigenfunctions ofH0, . . . , Hn can then be formulated
asS(z)u = q(z)u with q(z) =∑n

k=1
ck
2 ℘̄(z− zk) +

∑n
k=1 εkζ̄ (z− zk) + ε0. The eigenvalue of

Hj is thenεj , j = 0, . . . , n. Since
∑

j>1Hj = 0, one must necessarily haveε1 + · · ·+εn = 0.
Common eigenfunctions ofHj and thus ofS(z) can be obtained by the Bethe ansatz

method. They have the formf (w1) . . . f (wm)v0 wherev0 is the tensor product of highest
weight vectors,m = 1

2

∑
3j andw1, . . . , wm are a solution to the system of Bethe ansatz

equations, see [5,6] and below.

2.1. Separation of variables

We realize the representations ofsl2(C) by differential operators.

Lemma 2.3. For any3 ∈ C, the mapf 7→ t , h 7→ −2t d
dt + 3, e 7→ −t d2

dt2 + 3 d
dt defines

a representation ofsl2(C) on C[t ], the Verma moduleM3. If 3 is a non-negative integer,
t3+1C[t ] is an invariant subspace and the quotientL3 = C[t ]/t3+1C[t ] is irreducible with
highest weight vector1 ∈ Ker(e) of weight3.

The proof consists of checking the relations [e, f ] = h, [h, e] = 2e, [h, f ] = −2f and
et3+1 = 0.

Therefore, we may realize the tensor productM asC[t1, . . . , tn], and the tensor product
of irreducible representations (for integer3j ) asC[t1, . . . , tn]/

∑
j (t

3j+1
j C[t1, . . . , tn]). Then

M[0] consists of homogeneous polynomials of degreem = ∑
3k/2. We may then view

eλ(z), fλ(z), h(z), S(z), Hj as differential operators inn + 1 variablesλ, t1, . . . , tn. They
commute when acting on functions which are homogeneous int1, . . . , tn of degreem.

2.2. Separated variables

We express the differential operatorsS(z) in terms of new variables so that the eigenvalue
problem is reduced to ordinary differential equations. Following Sklyanin’s idea, the new
variablesC, y1, . . . , yn are the zeros and the leading coefficient of the operatorfλ:

fλ(z) = C
n∏
j=1

θ(z− yj )
θ(z− zj ) .

Since fλ(z) is realized as a multiplication operator and both sides of this equation are
functions ofz with definite transformation properties under translations by the lattice0, this
equation does define, locally around a generic point, a biholomorphic change of variables
(C, y1, . . . , yn) 7→ (λ, t1, . . . , tn). The formulae are

ti = C
∏
j θ(zi − yj )

θ ′(0)
∏
j :j 6=i θ(zi − zj )

and

λ =
n∑
j=1

(yj − zj ).

From these formulae we deduce the transformation properties of partial derivatives:

∂

∂yj
= ∂

∂λ
+

n∑
k=1

θ ′(yj − zk)
θ(yj − zk) tk

∂

∂tk

C
∂

∂C
=

n∑
k=1

tk
∂

∂tk
.
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The next step is to remark that a functionu(C, y1, . . . , yn) obeysS(z)u = q(z)u with
q(z) = ∑n

k=1
ck
2 ℘̄(z − zk) +

∑n
k=1 εkζ̄ (z − zk) + ε0 and

∑
j>1 εj = 0 if and only if it obeys

S(yj )u = q(yj )u for all j = 1, . . . , n and all generic points(y1, . . . , yn). Here the ambiguous
notationS(yj ) means: write differential operatorS(z) with the coefficients on the left of the
partial derivatives and replacez byyj in the coefficients. To prove this statement notice that, if
S(yj )v = q(yj )v, then

∏
θ(z−zi)(S(z)−q(z))u(y1, . . . , yn) is a holomorphic theta function

in z of ordern vanishing atn generic pointsyi . It thus vanishes: see the appendix.
It is then convenient to use the identity [eλ(z), fλ(z)] = −h′(z) onM[0], to writeS(z) as

S(z) = ( ∂
∂λ
− 1

2h(z))
2 − h′(z) + 2fλ(z)eλ(z), so that the last term vanishes if we setz = yj

and we get

S(yj ) =
(
∂

∂yj
−

n∑
k=1

3k

2
ζ̄ (yj − zk)

)2

. (1)

Proposition 2.4. A functionu(λ, t1, . . . , tn), homogeneous of degreem = 1
2

∑
3k in theti , is

a local solution of the partial differential equationsS(z)u = q(z)u, z ∈ C if and only if

u(λ, t1, . . . , tn) = Cnv(y1, . . . , yn)

andv obeys

∇2
yj
v = q(yj )v ∇yj =

∂

∂yj
−

n∑
k=1

3k

2
ζ̄ (yj − zk). (2)

2.3. Interpolation formula

The formula (1) expresses the values aty1, . . . , yn of the coefficients ofS(z) for z = yj . Since
the coefficients ofS(z) − 1

2

∑
k ck℘̄(z − zk) are elliptic functions ofz with at most simple

poles atz1, . . . , zn, they are uniquely determined by these values, and can be calculated by an
interpolation formula: let us writeS(z) in the form

S(z) = 1
2

n∑
k=1

ck℘̄(z− zk) +
n∏
k=1

θ(z− zk)−1Ŝ(z)

so thatŜ(z) is a theta function of ordern. Thus (see the appendix)

Ŝ(z) =
n∑
i=1

θ(z +
∑

j 6=i yj −
∑

k zk)

θ(
∑

j yj −
∑

k zk)

∏
j :j 6=i

θ(z− yj )
θ(yi − yj ) Ŝi

with

Ŝi =
n∏
k=1

θ(yi − zk)
((

∂

∂yi
−

n∑
k=1

3k

2
ζ̄ (yi − zk)

)2

− 1

2

n∑
k=1

ck℘̄(yi − zk)
)
.

2.4. Bethe ansatz

The separated equation reads

∇2
yv −

( n∑
k=1

ck

2
℘̄(y − zk) +

n∑
k=1

εj ζ̄ (y − zk) + ε0

)
v = 0 (3)

with ∇y = ∂
∂y
−∑n

k=1
3k
2 ζ̄ (y − zk). It is a second-order ordinary differential equation with

regular singular points atzk and characteristic exponents 0 and3k + 1. Following Hermite’s
method to solve the Laḿe equation [13] we seek solutions of the form

v(y) = ecy
m∏
k=1

θ(y − wk). (4)
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Functions of this form are called elliptic polynomials, see the appendix.
Let us first assume thatwk 6= zj mod0 for all j, k. Then we also havewk 6= wl for k 6= l,

since the only solution vanishing with its derivative at a regular point is the trivial solution.
Rewrite the equation in the formv′′(y)−∑k 3kζ̄ (y − zk)v′(y) + b(y)v(y) = 0 so thatb(y)
has at most simple poles at thezj . Taking derivatives of a functionv of the form (4) and setting
y equal to one of its zeros, we find the relation

v′′(wk) =
∑
j 6=k

ζ̄ (wk − wj)v′(wk) + 2cv′(wk).

Inserting this into the differential equation, we see thatv is a solution if and only if its zeros
wj obey the ‘Bethe ansatz equations’

n∑
l=1

3lζ̄ (wj − zl)−
∑
k:k 6=j

ζ̄ (wj − wk) = 2c j = 1, . . . , m.

Let us now consider the more general case of elliptic polynomials (4) vanishing atzi , for i in
some subsetI of {1, . . . , n}. Since the characteristic exponents atzi are 0,3i + 1, a solution
vanishing atzi must vanish to order3i + 1 and is thus divisible byθ(y − zi)3i+1 (this is only
possible if3i ∈ Z>0). Thenṽ(y) = ∏i∈I θ(y − zi)−3i−1v(y) is again of the form (4), but
withm replaced bym̃ = m−∑i∈I (3i +1). It obeys equation (3) with3i replaced by−3i−2
for i ∈ I .

Thus all elliptic polynomial solutions of (3) are of the form

v(y) = ecy
∏
i∈I
θ(y − zi)3̃i+1

m̃∏
k=1

θ(y − wk)

for some subsetI of {j |3j ∈ Z>0}, such thatwj 6= wl 6= zi (j 6= l) andw1, . . . , wm̃, c obey
the Bethe ansatz equations

n∑
l=1

3̃l ζ̄ (wj − zl)−
∑
k:k 6=j

ζ̄ (wj − wk) = 2c j = 1, . . . , m̃. (5)

Here3̃l = −3l − 2 if l ∈ I and3̃l = 3l otherwise.
To each such solution there corresponds a common eigenfunctionu which, expressed in

the separated variables, isu = Cn∏ v(yi). Up to a non-zero constant we get

u(λ) = ecλf (w1) . . . f (wm̃)vI . (6)

HerevI =
∏
i∈I (f

(i))3i+1v0 is a product of singular vectors. Only eigenvectors corresponding
to I = ∅ have non-trivial projections to eigenvectors with values in the tensor product of
irreducible representations.

Eigenvectors of the form (6), such thatw1, . . . , wm̃, c are a solution of the Bethe ansatz
equations (5) withwj 6= wk mod0, (j 6= k)andwj 6= zi mod0 are calledBethe eigenvectors.

2.5. Completeness of Bethe eigenvectors

Let us consider the common eigenvalue problem

Hiu(λ) = εiu(λ) i = 0, . . . , n. (7)

A natural class of functions preserved by the operatorsHi is given by meromorphic sections
of a flat line bundle onE. Namely, let for a characterχ : 0 → C×, H(χ) be the space of
meromorphic functionsλ 7→ u(λ) ∈ M[0] such thatu(λ + 1) = χ(1)u(λ) and

u(λ + τ) = χ(τ)eπ i
∑

j zj h
(j)

u(λ).
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It is easy to see thateλ(z),fλ(z)and∂/∂λ−h(z)/2 preserve functions with these transformation
properties, so thatS(z) andHj preserveH(χ).

It is then natural to look for eigenfunctions (non-trivial solutions of the differential
equations (7)) inH(χ).

Let 6(χ) be the set of(ε0, . . . , εn) ∈ Cn+1 such that there exists a non-trivial function
u ∈ H(χ) with Hju = εju, j = 0, . . . , n. Let σ ∈ 0∗ be the character such that
σ(r + sτ ) = (−1)r+s .

Theorem 2.5.Let χ ∈ 0∗. Then(ε0, . . . , εn) ∈ 6(χ) if and only if
∑

k>1 εk = 0 and the
separated problem

∇2
yv(y)− 1

4

∑
k

3k(3k + 2)℘̄(y − zk)v(y) =
(∑

k

ζ̄ (y − zk)εk + ε0

)
v(y)

admits a non-trivial elliptic polynomial solutionv ∈ 2m(σ
mχ). In this case there is a Bethe

eigenvector with these eigenvalues.

Proof. A common eigenfunction, viewed as a polynomial inti has the form

u(λ, t1, . . . , tn) =
∑

m1+···+mn=m
um1,...,mn(λ)

∏
i

t
mi
i .

Replacingti , λ as functions of the new variables, we obtain

u(λ, t1, . . . , tn) = Cnv(y1, . . . , yn)

wherev(y1, . . . , yn) is a linear combination of products of theta functions in each of theyj with
coefficientsum1,...,mn(

∑
yj −

∑
zk) andv(y1, . . . , yn) obeys, in each variable, the separated

second-order equation (2).A priori the meromorphic functionv(y1, . . . , yn) may have poles
on the hyperplane

∑
yi =

∑
zi mod0. However, this is impossible: considerv as a function

of, say,y1 with the other variable fixed at some generic position. Thenv, as a function ofy1,
being a solution of a linear second-order equation may only have singularities at the poleszj
of the coefficients. Moreover, sinceu is inH(χ), the functionsyi 7→ v(y1, . . . , yn) belong to
2m(σ

mχ). Thus the separated problem admits a non-trivial solution in2m(σ
mχ). As shown

in section 2.4, such a solution gives rise to a Bethe eigenvector. �

3. The difference case

3.1. Representations of the elliptic quantum groupEτ,η(sl2)

The difference version of the differential operatorseλ(z), fλ(z), ∂λ − h(z)/2, are operators
obeying the relations of the elliptic quantum groupEτ,η(sl2). Let us recall the definitions [7]:
we fix two complex parametersτ, η, such that Im(τ ) > 0. The definition ofEτ,η(sl2) is based
on a dynamicalR-matrixR(z, λ) which we now introduce. Let

α(z, λ) = θ(λ + 2η)θ(z)

θ(λ)θ(z− 2η)
β(z, λ) = − θ(λ + z)θ(2η)

θ(λ)θ(z− 2η)
.

Let V be a two-dimensional complex vector space with basise[1], e[−1], and letEij e[k] =
δjke[i], h = E11− E−1,−1. Then, forz, λ ∈ C, R(z, λ) ∈ End(V ⊗ V ) is the matrix

R(z, λ) = E11⊗ E11 +E−1,−1⊗ E−1,−1 + α(z, λ)E11⊗ E−1,−1

+α(z,−λ)E−1,−1⊗ E11 + β(z, λ)E1,−1⊗ E−1,1 + β(z,−λ)E−1,1⊗ E1,−1.
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ThisR-matrix obeys the dynamical quantum Yang–Baxter equation

R(12)(z− w, λ− 2ηh(3))R(13)(z, λ)R(23)(w, λ− 2ηh(1))

= R(23)(w, λ)R(13)(z, λ− 2ηh(2))R(12)(z− w, λ)
in End(V ⊗ V ⊗ V ), z,w, λ ∈ C. The meaning of this notation is the following:
R(12)(λ− 2ηh(3))v1⊗ v2⊗ v3 is defined as

(R(z, λ− 2ηµ3)v1⊗ v2)⊗ v3

if hv3 = µ3v3. The other terms are defined similarly: in general, letV1, . . . , Vn be modules
over the one-dimensional Lie algebrah = Ch with one generatorh, such that, for alli, Vi
is the direct sum of finite-dimensional eigenspacesVi [µ] of h, labelled by the eigenvalue
µ. We call such modules diagonalizableh-modules. IfX ∈ End(Vi) we denote by
X(i) ∈ End(V1⊗ · · · ⊗ Vn) the operator· · · ⊗ Id⊗X⊗ Id⊗ · · · acting non-trivially on theith
factor, and ifX =∑Xk ⊗ Yk ∈ End(Vi ⊗ Vj ) we setX(ij) =∑X

(i)
k Y

(j)

k . If X(µ1, . . . , µn)

is a function with values in End(V1 ⊗ · · · ⊗ Vn), thenX(h(1), . . . , h(n))v = X(µ1, . . . , µn)v

if h(i)v = µiv, for all i = 1, . . . , n.
A module overEτ,η(sl2) is then a diagonalizableh-moduleW = ⊕µ∈CW [µ], together

with an L-operatorL(z, λ) ∈ Endh(V ⊗ W)) (a linear map commuting withh(1) + h(2))
depending meromorphically onz, λ ∈ C and obeying the relations

R(12)(z− w, λ− 2ηh(3))L(13)(z, λ)L(23)(w, λ− 2ηh(1))

= L(23)(w, λ)L(13)(z, λ− 2ηh(2))R(12)(z− w, λ). (8)

For example,W = V , L(w, λ) = R(w − z0, λ) is a module overEτ,η(sl2), called the
fundamental representation, with evaluation pointz0. In [7] more general examples of such
modules were constructed: in particular, for any pair of complex numbers3, z we have an
evaluation Verma moduleM3(z). It has a weight decompositionM3 = ⊕∞j=0M3[3−2j ], with
one-dimensional weight spacesM3[µ]. The action of theL-operator is described explicitly
in [7]. Also, we have a notion of tensor products of modules overEτ,η(sl2). The main examples
considered in this paper will be tensor productsM31(z1)⊗· · ·⊗M3n(zn) of evaluation Verma
modules and some of their subquotients.

It will be convenient here to consider more generalL-operators obeying the relations. So
we define afunctional moduleoverEτ,η(sl2) to be given by a pair(W,L) whereW is a space
of complex-valued functions on a certain set andh acts on it as multiplication by a function,
andL(z, λ) is a meromorphic function ofz andλ acting as a difference operator onV ⊗W ,
commuting withh⊗ 1 + 1⊗ h, and obeying the relations (8). An example of such functional
modules is provided by the ‘universal evaluation modules’ of [7].h acts by multiplication by
a continuous variable. Evaluation Verma modules are obtained by restricting the range of this
continuous variable to a discrete set.

For any module or functional moduleW over Eτ,η(sl2), we define the associated
operator algebra, an algebra of operators on the space Fun(W) of meromorphic functions
of λ ∈ C with values inW . It is generated byh, acting on the values, and operators
a(z), b(z), c(z), d(z). Namely, letL̃(z) ∈ End(V ⊗ Fun(W)) be the operator defined by
(L̃(z)(v⊗ f ))(λ) = L(z, λ)(v⊗ f (λ− 2ηµ)) if hv = µv. View L̃(z) as a 2× 2 matrix with
entries in End(Fun(W)):

L̃(z)(e[1] ⊗ f ) = e[1] ⊗ a(z)f + e[−1]⊗ c(z)f
L̃(z)(e[−1]⊗ f ) = e[1] ⊗ b(z)f + e[−1]⊗ d(z)f.

The relations obeyed by these operators are described in detail in [7] (where the operators are
denoted bỹa(z), b̃(z) and so on).
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To each module we associate a central element of the operator algebra. It is given by the
quantum determinant [7]

Det(z) = θ(λ)

θ(λ− 2ηh)
(a(z + 2η)d(z)− c(z + 2η)b(z)).

3.2. A class of representations by difference operators

Let z1, . . . , zn ∈ C be distinct points and31, . . . , 3n ∈ Z>0. Let us introduce
difference operators acting on functions ofn + 1 complex variablesλ, x1, . . . , xn. Let
(T axi f )(λ, x1, . . . , xn) = f (λ, x1, . . . , xi + a, . . . , xn) and (T aλ f )(λ, x1, . . . , xn) = f (λ +
a, x1, . . . , xn). The stepsa will always be±2η. Let

1−(z) =
n∏
i=1

θ(z− zi +3iη) and 1+(z) =
n∏
i=1

θ(z− zi −3iη).

The functions1±(z = −xi), considered as multiplication operators, will be denoted simply
by1±(−xi). We also sets =∑n

i=1(xi + zi).
With these conventions, we define:

a(z) =
n∏
i=1

θ(z + xi)
θ(λ +

∑n
l=1(xl + zl +3lη))

θ(λ)
T
−2η
λ

b(z) = −
n∑
i=1

θ(λ + z + xi)

θ(λ)

∏
j 6=i

θ(z + xj )

θ(xi − xj )1+(−xi)T −2η
xi

T
+2η
λ

c(z) = −
n∑
i=1

θ(−λ + z + xi − 2s)

θ(λ)

∏
j 6=i

θ(z + xj )

θ(xi − xj )1−(−xi)T
+2η
xi
T
−2η
λ

Det(z) =
n∏
i=1

θ(z− zi −3iη)θ(z− zi +3iη + 2η).

Theorem 3.1.The difference operatorsa(z), b(z), c(z) together withd(z) defined implicitly
by the determinant relation

a(z + 2η)d(z)− c(z + 2η)b(z) = θ(λ− 2ηh)

θ(λ)
Det(z)

obey the relations of the elliptic quantum group (8) withηh = −∑i (xi + zi).

Example. If n = 1, the generators act on functions of two variablesx1, λ, andh acts as
−x1 − z1. If we introduce a new variableh = −η−1(x1 + z1), so that the generatorh acts
by multiplication byh, we obtain a representation on functions ofh, λ. The action of the
generators is given by the difference operators:

a(z)v(h, λ) = θ(z− z1− ηh)θ(λ− ηh +31η)

θ(λ)
v(h, λ− 2η)

b(z)v(h, λ) = θ(λ + z− z1− ηh)
θ(λ)

θ(−ηh +31η)v(h + 2, λ + 2η)

c(z)v(h, λ) = −θ(−λ + z− z1 + ηh)

θ(λ)
θ(ηh +31η)v(h− 2, λ− 2η)

d(z)v(h, λ) = θ(z− z1 + ηh)
θ(λ− ηh−31η)

θ(λ)
v(h, λ + 2η).

This is, up to normalization, the ‘universal evaluation module’ of [7], section 9.
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Proof of theorem 3.1.The proof consists of a straightforward verification of the 16 relations.
Let us give an example: one relation is

a(z)b(w) = θ(z− w)θ(λ + 2η)

θ(z− w − 2η)θ(λ)
b(w)a(z) +

θ(z− w − λ)θ(2η)
θ(z− w − 2η)θ(λ)

a(w)b(z).

This identity is verified by looking at each summand ofb(z) and b(w) separately. The
corresponding equation to one such summand typically looks like

θ(z + xk)

(∏
i 6=k
θ(z + xi)

)
θ(λ +

∑n
i=1(xi + zi +3iη))θ(λ +w + xk − 2η)

θ(λ)θ(λ− 2η)

×
(∏
i 6=k

θ(w + xi)

θ(xk − xi)
)
1+(−xk)T −2η

xk

= θ(z− w)θ(λ + 2η)

θ(z− w − 2η)θ(λ)

θ(λ +w + xk)

θ(λ)

(∏
i 6=k

θ(w + xi)

θ(xk − xi)
)

×
(∏
i 6=k
θ(z + xi)

)
θ(z + xk − 2η)θ(λ +

∑n
i=1(xi + zi +3iη))

θ(λ + 2η)
1+(−xk)T −2η

xk

+
θ(z− w − λ)θ(2η)
θ(z− w − 2η)θ(λ)

θ(λ +
∑n

i=1(xi + zi +3iη))θ(w + xk)

θ(λ)

(∏
i 6=k
θ(w + xi)

)
×
(∏
i 6=k

θ(z + xi)

θ(xk − xi)
)
θ(z + xk + λ− 2η)

θ(λ− 2η)
1+(−xk)T −2η

xk
.

By taking into account that each summand of the above equation involves a factor(∏
i 6=k

θ(z + xi)θ(w + xi)

θ(xk − xi)
)
θ(λ +

∑n
i=1(xi + zi +3iη))

θ(λ)

the task reduces to verifying

θ(z + xk)
θ(λ +w + xk − 2η)

θ(λ− 2η)
= θ(z− w)θ(λ +w + xk)θ(z + xk − 2η)

θ(z− w − 2η)θ(λ)

+
θ(z− w − λ)θ(2η)θ(w + xk)θ(λ + z + xk − 2η)

θ(z− w − 2η)θ(λ)θ(λ− 2η)
which we write in the form

f1(z, w, λ) = f2(z, w, λ) + f3(z, w, λ).

This identity is proved in two steps. First, one shows that the functionsfi(z, w, λ), i = 1, 2, 3,
transform in the same way underλ→ λ+1, λ→ λ+τ . The transformation laws thus obtained
are the following:

fi(z, w, λ + 1) = fi(z, w, λ)
fi(z, w, λ + τ) = e−2π i(w+xk)fi(z, w, λ)

for i = 1, 2, 3. The second step is to show that the above relation holds for the residues of the
functionsfi(z, w, λ). Here, one has to show that the identity holds forλ = 2η andλ = 0. For
λ = 0 one obtains
θ(z− w)θ(w + xk)θ(z + xk − 2η)

θ(z− w − 2η)
+
θ(z− w)θ(2η)θ(w + xk)θ(z + xk − 2η)

θ(−2η)θ(z− w − 2η)
= 0

whereas theλ = 2η residue yields

θ(z + xk)θ(w + xk) = θ(z− w − 2η)θ(2η)

θ(z− w − 2η)θ(2η)
θ(w + xk)θ(z + xk).
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This proves [7], paragraph 3, relation 2. The other relations are proved in a similar but often
more intricate fashion.

One identity that is used is the vanishing of the sum of the residues atv = −xj −2η,−xj
of the function

f (v) = θ(2s + xi + v + 2η)

θ(v + xi + 2η)

n∏
l=1

θ(v − zl −3l)θ(v − zl +3l + 2η)

θ(v + xl)θ(v + xl + 2η)

a consequence of the double periodicityf (v + 1) = f (v + τ) = f (v).
Also, some of the more complicated relations, such asd(z)d(w) = d(w)d(z) turn out to

be consequences of the simpler relations and the fact that the determinant is central.�

Remark. This is the difference elliptic analogue of formulae that have appeared in the
literature. In the rational difference and differential case such a formula has been written
by Sklyanin [10]. A trigonometric difference version appears in Tarasov and Varchenko [12].

3.3. Restrictions

The linear difference operators defined in the previous sections act on meromorphic functions
of complex variablesλ, x1, . . . , xn. To compare these operators with evaluation modules of the
elliptic quantum groups and with transfer matrices of IRF models, we have to restrict their action
to the space of meromorphic functions defined on submanifolds ofCn+1. The conditions for a
difference operatorX with meromorphic coefficients to be defined on meromorphic functions
on a submanifoldS are that the value at a genericx ∈ S of Xf (x) is well defined (i.e. there
are no poles at generic points ofS) and is only a function of the values off at points ofS.
Equivalently, a difference operatorX can be restricted toS if it maps functions vanishing on
S to functions vanishing onS. The restriction is then identified with the induced action on the
quotient by the function vanishing onS.

These conditions are fulfilled in the following situations.

(1) Restriction to discrete values ofxi . We assume thatzi , η are generic and that the3i are
non-negative integers. We takeS to be the set

S0 = {(λ, x1, . . . , xn) ∈ Cn+1| − xi = zi + η(3i − 2mi),mi = 0, 1, . . . , 3i,

i = 1, . . . , n}.
Since the steps in the difference operators are by multiples of 2η, it is clear that one
can restrict the action ofa(z), . . . , d(z) to functions on subsets given by conditions
xi ∈ ai + 2ηZ, for genericai, η. The genericity condition onai , η is that the poles
at xi − xj mod0 of the coefficients of the difference operators are never on the subset.
What we have to check is that the restriction to these finite sets of values forxi is well
defined. Since onlyb(z), c(z) shift the value ofxi , it is sufficient to consider these two
operators. For a functionf (λ, x1, . . . , xn), the value at−xi = zi + η3i of b(z)f appears
to depend on the value off at−xi + 2η = zi + η3i + 2η, which is not inS0, but in fact
it does not, since the coefficient1−(−xi) vanishes there. Similarlyc(z) is well defined
onS0.
For this restrictionh has discrete spectrum. It will be used to compare our representation
with tensor products of irreducible representations.

(2) Restriction toλ = ηh. Let S be the set

S1 =
{
(λ, x1, . . . , xn)|λ = −

∑
i

(xi + zi)

}
.
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Thenb(z), c(z) can be restricted to functions onS1. Indeed, ifu is a function vanishing
on S1, thenT −2η

xi T
2η
λ u still vanishes onS1. The denominators of the coefficients ofb(z)

do not vanish at generic points ofS1. Thusb(z)u = 0 if u vanishes onS1. The same
reasoning applies toc(z).
This restriction is needed, as we shall see, to construct commuting transfer matrices.

(3) IRF restriction. Consider the restriction ofb(z), c(z) on functions onS = S0 ∩ S1. If
zi andη are generic, the only possible pole onS in the coefficients of these differential
operators comes from the denominatorθ(λ). This denominator does not vanish if we
assume, for instance, that the3i are all odd.
HereS is finite, so that the restriction is to a finite-dimensional space of functions, which
will be identified with the space of states of an IRF model.

3.4. Commuting difference operators

One of the main properties ofR-matrices to statistical mechanics is thatL-operators obeying
quantum group relations give rise to commuting transfer matrices trV L. In [10] it is noticed
that more generally one can consider trV ((K ⊗ 1)L) for some endomorphism ofV such that
K ⊗K commutes with theR-matrices.

In our dynamical case it is known that the tracesa(z)+d(z) commute for different values
of z when acting on the zero weight space of a module overEτ,η(sl2). Another possibility
to obtain commuting operators is to take thetwisted transfer matrixtrV ((K ⊗ 1)L) with a
suitableK.

Proposition 3.2. For anyϑ ∈ C, the operatorsT (z) = b(z) + ϑc(z), z ∈ C, restricted to
functions on the submanifoldS1 given by the equationλ +

∑n
i=1 xi +

∑n
i=1 zi = 0, form a

commuting family.

This proposition can be proved directly or by the following general argument.
It is first of all sufficient to consider the caseϑ = 1 since the other cases are obtained by

conjugating the operator by the multiplication by an exponential function ofλ. Then we may
write T (z) as

T (z) =
∑
µ=±1

trV [µ](K ⊗ 1L(z, λ))T −2ηµ
λ

with

K =
(

0 1
1 0

)
.

The partial trace trV [µ] : End(V ⊗ W) → End(W) is the homomorphism such that if
a ∈ End(V ), b ∈ End(W), then trV [µ](a ⊗ b) =

∑
ei(aei)b for any basis(ei) of V [µ]

with ei ∈ V ∗ defined byei(ej ) = δij andei(w) = 0 forw ∈ V [ν], ν 6= µ. We have

K ⊗KR(z, λ) = R(z,−λ)K ⊗K. (9)

We then write theRLL relations in the form

R(12)(z− w, λ− 2ηh)L(1)(z, λ)L(2)(w, λ− 2ηh(1))R(12)(z− w, λ)−1

= L(2)(w, λ)L(1)(z, λ− 2ηh(2))

multiply both sides by(K⊗K)(12) from the left, and take the partial trace over a weight space
(V ⊗ V )[µ]. Using (9), we obtain

tr(V⊗V )[µ](R
(12)(z− w,−λ + 2ηh)K(1)K(2)L(1)(z, λ)L(2)(w, λ− 2ηh(1))R(12)(z− w, λ)−1)

= tr(V⊗V )[µ] K
(2)L(2)(w, λ)K(1)L(1)(z, λ− 2ηh(2)).
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The next step is to use the cyclicity of the trace to bring the firstR-matrix to the right. For this
we need the commutation relations ofhwith the product in the trace. Since [L(i), h(i) +h] = 0
andh(i)K(i) = −K(i)h(i), we see that

h tr(V⊗V )[µ](A
(12)K(1)K(2)L(1)L(2)) = tr(V⊗V )[µ](A

(12)K(1)K(2)L(1)L(2)) · (h + 2µ)

for anyA ∈ End(V ⊗ V ) commuting withh(1) + h(2). We then get∑
µ

tr(V⊗V )[µ](K
(1)K(2)L(1)(z, λ)L(2)(w, λ− 2ηh(1))R(12)(z− w, λ)−1R(12)

×(z− w,−λ + 2η(h + 2µ))T −2ηµ
λ = T (w)T (z).

If we then have a relationηhu(λ) = λu(λ), and we apply the above equation tou, we
may replaceh in the left-hand side byλ/η − 2µ, and theR-matrices cancel, so that
T (z)T (w) = T (w)T (z).

3.5. Evaluation modules

Here we show that the restriction of the operatorsa, b, c, d of theorem 3.1 to functions on the
submanifoldS0 is essentially the tensor product of finite-dimensional irreducible evaluation
modules of [7].

Proposition 3.3. Suppose thatη, z1, . . . , zn are generic. Leta, b, c, d be the difference
operators defined in 3.2 restricted to functions onS0 and letκ(z) =∏n

i=1 θ(z− zi − η3i)
−1.

Thenā(z) = κ(z)a(z), . . . , d̄(z) = κ(z)d(z) define anEτ,η(sl2) module isomorphic to the
tensor productL31(z1− η)⊗ · · · ⊗ L3n(zn − η) of irreducible evaluation modules.

LetW be the space of functions onS. It is a vector space over the field of meromorphic
functions ofλ of dimension

∏n
i=1(3i + 1). To prove this proposition we have to identify a

highest weight vector inv, i.e. an eigenvector ofa(z),d(z)andh killed byc(z). The eigenvalues
(A(z, λ),D(z, λ),3) of (a(z), d(z), h) determine then by [7] uniquely an irreducible module
up to isomorphism.

Let δa(xi) ∈ W be the delta function atxi = a: δa(xi) = 1 if xi = a, δa(xi) = 0, if
xi 6= a. The highest weight vector may be taken as the product of delta functions

vh.w. =
n∏
i=1

δ−zi−3iη(xi).

This function is indeed annihilated byc(z) andhvh.w. =
∑
3ivh.w.. Moreover,vh.w. is an

eigenvector fora(z) andd(z):

a(z)vh.w. =
n∏
i=1

θ(z− zi −3iη)
θ(λ−∑n

i=13iη +
∑n

i=13iη)

θ(λ)
vh.w.

=
n∏
i=1

θ(z− zi −3iη)vh.w..

Thusa(z)vh.w. = A(z, λ)vh.w., with A(z, λ) = ∏n
i=1 θ(z − zi − 3iη). Similaryd(z)vh.w. =

D(z, λ)vh.w. with eigenvalue

D(z, λ) = θ(λ− 2η
∑n

i=13i)

θ(λ)
Det(z− 2η, λ)A−1(z− 2η, λ + 2η)

= θ(λ− 2η
∑n

i=13i)

θ(λ)

n∏
i=1

θ(z− zi −3iη − 2η)θ(z− zi +3iη)

θ(z− zi −3iη − 2η)
.
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Thus the eigenvalues of(ā(z), d̄(z), h) are(1, D̄(z, λ),
∑
3i) with

D̄(z, λ) = θ(λ− 2η
∑n

i=13i)

θ(λ)

n∏
i=1

θ(z− zi +3iη)

θ(z− zi −3iη)

which indeed reproduces the highest weight defined in [7] p 750.

3.6. Separation of variables: continuous case

In this section we find an analogue of the results of 2.4, 2.5. We consider the continuous case,
in which the variablesxi take arbitrary complex values. Then the eigenvalue problem for a
functionu onS1 is T (z)u(x) = ε(z)u(x), with

T (−z)u(x1, . . . , xn) =
n∑
i=1

θ(λ− z + xi)

θ(λ)

∏
j 6=i

θ(z− xj )
θ(xi − xj )

×
( n∏
k=1

θ(xi + zk + η3k)u(x1, . . . , xi − 2η, · · · , xn)

+
n∏
k=1

θ(xi + zk − η3k)u(x1, . . . , xi + 2η, . . . , xn)

)
where we view a functionu onS1 as a function ofx1, . . . , xn by settingλ = −∑(xj + zj ).

From this formula it is clear thatT (z)u(x) is an entire holomorphic function ofz with
theta function behaviour asz is translated by elements of the lattice0 = Z + τZ. It follows
that a necessary condition ofε(z) to be an eigenvalue is thatε belong to the space2n(χ0)

of theta functions of ordern with characterχ0 : 0 → C∗ (see the appendix) given by
χ0(r + sτ ) = (−1)n(r+s) exp(2π i

∑
zk). This means thatε is an entire function obeying

ε(z + 1) = χ0(1)ε(z) ε(z + τ) = χ0(τ )e
−π in(2z+τ)ε(z).

The method of separation of variables consists in looking for common eigenfunctionsu(x)

in the factorized formu(x) = ∏n
i=1Q(xi). Settingz = −xi in the eigenvalue problem

(T (z)− ε(z))u = 0 we see that a necessary condition is thatQ, ε obey the difference equation

A+(x)Q(x − 2η) +A−(x)Q(x + 2η) = ε(−x)Q(x) A±(x) =
n∏
k=1

θ(x + zk ± η3k).

(10)

As explained in the appendix, this difference equation has anelliptic polynomial solution, i.e.
a solution of the form

Q(x) = eax
m∏
k=1

θ(x − wk) (11)

if
∑
3i is an even integer 2m. Such a solution may be constructed by the Bethe ansatz.

Proposition 3.4. Suppose that31 + · · · + 3n = 2m for some positive integerm, and let
(a,w1, . . . , wm) be a solution of the system of Bethe ansatz equations

A+(wi)
∏
j :j 6=i

θ(wi − wj − 2η) = e4aηA−(wi)
∏
j :j 6=i

θ(wi − wj + 2η) i = 1, . . . , m (12)

such thatwi 6= wj mod0, (i 6= j). Thenu = ∏Q(xi) withQ(x) = eax
∏m
k=1 θ(x − wk) is

a common eigenfunction ofT (z).
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Proof. This is a rephrasing of the first part of proposition A.4. �

Definition. An eigenfunction of the form of proposition 3.4 is called a Bethe eigenfunction.

Conversely, let us suppose that
∑
3i = 2m, m ∈ Z>0 and show that all eigenfunctions

in a suitable class are of this form. Let, for a characterχ : 0 → C∗, Hm(χ) be the space of
meromorphic functions ofn complex variablesx1, . . . , xn such that

u(. . . , xi + 1, . . .) = χ(1)u(. . . , xi, . . .)
u(. . . , xi + τ, . . .) = χ(τ)e−π im(2xj+τ)u(. . . , xi, . . .).

The following result can then easily be verified using the behaviour of the coefficients of the
difference operatorT (z).

Lemma 3.5. For any characterχ and anyz ∈ C, T (z) preservesHm(χ).

Let for a characterχ ∈ 0∗, 6(χ) ⊂ 2m(χ0) be the set of functionsε so that there exists
aholomorphiccommon eigenfunctionu ∈ Hm(χ) of T (z), z ∈ C, with eigenvalueε(z).

Theorem 3.6.Suppose that31 + · · · +3n = 2m for some positive integerm. Thenε ∈ 6(χ)
if and only if there is an eigenfunctionu(x1, . . . , xn) of the formu(x1, . . . , xn) =

∏n
i=1Q(xi)

with eigenvalueε, such thatQ(x) = eax
∏m
i=1 θ(x − wi) for some solution(a,w1, . . . , wm)

of the Bethe ansatz equations with

χ(1) = (−1)mea χ(τ) = (−1)meaτ+2π i
∑
wk .

Proof. It remains to show that ifε ∈ 6(χ) then this eigenvalue corresponds to a Bethe
eigenfunction.

Suppose thatε ∈ 6(χ) and u is a holomorphic eigenfunction inHm(χ) with this
eigenvalue. Then, for eachi, the functionu viewed as a function ofxi belongs to2m(χ). By
settingz = −xi in the eigenvalue equationT (z)u(x1, . . . , xn) = ε(z)u(x1, . . . , xn), we see
thatu is a solution of the separated equation

A+(xi)u(. . . , xi − 2η, . . .) +A−(xi)u(. . . , xi + 2η, . . .) = ε(−xi)u(x1, . . . , xn). (13)

HereA±(x) =
∏n
k=1 θ(x + zk ± η3k). Consider the variablesxj , j 6= i as fixed generic

parameters. Then

Q(x) = u(x1, . . . , xi−1, x, xi+1, . . . , xn)

is a non-trivial solution of (10). By the factorization theorem for the theta function (see the
appendix), such a solution is, up to normalization, of the formQ(x) = eax

∏m
j=1 θ(x − wj),

andχ is related toa andwk by the equations stated in the theorem. Settingxi = wj in (13)
gives then the Bethe ansatz equations. �

3.7. Semiclassical limit

The difference operatorT (z)degenerates to the differential operatorS(z)of section 2 expressed
in the separated variables. More precisely, letT (z) = Tη(z; z1, . . . , zn) act on an analytic
functionu(x1, . . . , xn). Then

Tη(z; z1, . . . , zn)u =
n∏
k=1

θ(zk − z)

×
[
u + 2η2

(
S(−z;−z1, . . . ,−zn)− 1

2

n∑
k=1

ck℘̄(z− zk)
)
u + O(η2)

]
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whereS(z; z1, . . . , zn) is the differential operator of section 2 expressed in terms of the
separated variablesyi , which are here calledxi . This formula may be proved by expanding
Tη(z)u in a Taylor series inη up to second order, and comparing the result with the expression
for S given by the interpolation formula in section 2.3.

4. IRF models with antiperiodic boundary conditions

We consider here the case where31 = · · · = 3n = 1 and show that the commuting
transfer matricesT (z) restricted to functions onS0 ∩ S1 are transfer matrices of IRF models
with antiperiodic boundary conditions. The IRF models (see [1–3]) of statistical mechanics
are two-dimensional lattice models in which the configurations over which one sums in the
partition function associate an element, the height, of a certain set to each pair of neighbouring
points. The weight of a configuration is the product of local Boltzmann weights associated
to each ‘face’, or square formed by four neighbouring points. The local Boltzmann weight
W(a, b, c, d|z) depends on the heightsa, b, c, d at the neighbouring points and the spectral
parameterz ∈ C. The spectral parameter can be any fixed number, but more generally, in
the inhomogeneous model, one associates a spectral parameter to each row and column of
faces in the lattice and takesz to be the difference between the row parameter and the column
parameter. In the simplestsl2 case the heights are real numbers and the local Boltzmann
weights are related to matrix elements of our dynamicalR-matrix by

R(z, λ = −2ηd)e[c − d] ⊗ e[b − c] =
∑
a

W(c, b, a, d|z)e[b − a] ⊗ e[a − d] (14)

wherec − d, b − c, b − a, a − d ∈ {−1, 1}. If the latter conditions are not fulfilled, then
W = 0†.

As shown in [8], the transfer matrixa(z)+d(z) on the zero-weight subspace of the tensor
product of two-dimensional representations is then identified with the row-to-row transfer
matrix of the IRF model with periodic boundary conditions. Here we show that a similar
computation applied to the twisted transfer matrixb(z) + c(z) gives the row-to-row transfer
matrix of the IRF model with antiperiodic boundary conditions.

The formulae are as follows: letV (z1)⊗·⊗V (zn) be a tensor product of two-dimensional
evaluation modules and assume thatn is odd. Then theL-operator for this module is

L(z, λ) = R(01)

(
z− z1, λ− 2η

n∑
i=2

h(i)
)
. . . R(0n−1)(z− zn−1, λ− 2ηh(n))R(0n)(z− zn, λ).

Then the twisted transfer matrices, see section 3.4, acting on functionsu(λ) restricted to the
submanifold given by the equationλ = ηh form a commuting family parametrized by the
spectral parameter. Let us call these transfer matricesTIRF(z). The restriction means that
TIRF(z) preserves functionsu(λ) of the formu(λ) =∑µ δηµ(λ)u[µ] for some vectorsu[µ] of
weightµ. Hereδa(b) is one ifa = b and zero otherwise. The restriction to this subspace of
function ofλ is well defined ifn is odd, as the singularities of theL-operator are atλ ∈ 2ηZ
whereasλ takes valuesηµ, whereµ, the weight of a vector in⊗V (zi), is an odd number ifn
is odd. So ifη is generic, there are no singularities at this points. Explicitly,

TIRF(z) = b̄(z) + c̄(z) =
∑
µ

tr(0)V [µ] K
(0)R(01)

(
z− z1, λ− 2η

n∑
i=2

h(i)
)

† The normalization chosen here is so thatW(l, l+1, l+2, l+1|z) = 1 rather than the more commonθ(z−2η)/θ(2η).
Also, our spectral parameter is normalized in a different way than in the literature.
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×R(02)

(
z− z2, λ− 2η

n∑
i=3

h(i)
)
. . . R(0n−1)(z− zn−1, λ− 2ηh(n))

×R(0n)(z− zn, λ)T −2ηµ
λ (15)

with

K =
(

0 1
1 0

)
.

The product ofR-matrices acts onV ⊗ (⊗ni=1V ), where the index(0) refers to action on the
first factor of the tensor product and tr(0) denotes the trace over the first factor. The subsequent
factors are numbered accordingly from 1 ton.

The twisted transfer matrices are defined on a 2n-dimensional space. This space has a
basisδη∑ σi (λ)e[σ1] ⊗ · · · ⊗ e[σn] with σi ∈ {1,−1}. It is convenient to write this basis in
terms of antiperiodic paths: let fora1, . . . , an, an+1 ∈ Z + n/2, such that|ai − ai+1| = 1
(i = 1, . . . , n), andan+1 = −a1

|a1, . . . , an+1〉 = δ−2ηan+1(λ)e[a1− a2] ⊗ · · · ⊗ e[an − an+1].

Proposition 4.1. For any antiperiodic path|a1, . . . , an, an+1 = −a1〉, we have

TIRF(z)|a1, . . . , an+1〉 =
∑

b1,...,bn,bn+1=−b1

n∏
i=1

W(ai+1, ai, bi, bi+1) |b1, . . . , bn+1〉. (16)

This expression is, by definition, the transfer matrix of IRF models with antiperiodic
boundary conditions. The partition function for the IRF model with antiperiodic boundary
conditions in one direction is then trT (w1) . . . T (wm). Thewi are the spectral parameters
associated to them rows, and thezi are the spectral parameters associated to then columns.

Proof of the proposition. Let e∗[1], e∗[−1] be the dual basis toe[1], e[−1]:

TIRF(z)|a1, . . . , an+1〉 =
∑
µ

tr(0)V [µ] K
(0)R(01)

(
z− z1, λ− 2η

n∑
i=2

h(i)
)

×R(02)

(
z− z2, λ− 2η

n∑
i=3

h(i)
)
. . . R(0n)(z− zn, λ)δ−2η(an+1−µ)(λ)e[a1− a2]

⊗ · · · ⊗ e[an − an+1] =
∑
µ

e(0)∗[µ]K(0)R(01)

(
z− z1, λ− 2η

n∑
i=2

h(i)
)

. . . R(0n)(z− zn, λ)δ−2η(an+1−µ)(λ)e
(0)[µ] ⊗ e[a1− a2]

⊗ · · · ⊗ e[an − an+1] =
∑
bn+1

e(0)∗[an+1− bn+1]K
(0)R(01)

×
(
z− z1, λ− 2η

n∑
i=2

h(i)
)
. . . R(0n)(z− zn, λ)δ−2ηbn+1(λ)e

(0)[an+1− bn+1]

⊗e[a1− a2] ⊗ · · · ⊗ e[an − an+1] =
∑
bn+1,bn

e(0)∗[an+1− bn+1]K
(0)R(01)

×
(
z− z1, λ− 2η

n∑
i=2

h(i)
)
. . . R(0n−1)(z− zn−1, λ− 2ηh(n))

×W(an+1, an, bn, bn+1)δ−2ηbn+1(λ)e
(0)[an − bn] ⊗ e[a1− a2]

⊗ · · · ⊗ e[an−1− an] ⊗ e[bn − bn+1]
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= · · · =
∑

bn+1,...bi

e(0)∗[an+1− bn+1]K
(0)R(01)

(
z− z1, λ− 2η

n∑
i=2

h(i)
)

. . . R(0i−1)

(
z− zi−1, λ− 2η

n∑
j=i

h(j)
)
5n−i
j=0W(an+1−j , an−j , bn−j , bn+1−j )

×δ−2ηbn+1(λ)e
(0)[ai − bi ] ⊗ e[a1− a2] ⊗ e[ai−1− ai ] ⊗ e[bi − bi+1]

⊗ · · · ⊗ e[bn − bn+1] = · · · =
∑

bn+1,...,b1

e(0)∗[an+1− bn+1]K
(0)5n

i=1

×W(ai+1, ai, bi, bi+1)δ−2ηbn+1(λ)e
(0)[a1− b1] ⊗ e[b1− b2]

⊗ · · · ⊗ e[bn − bn+1] =
∑

bn+1,...,b1

e(0)∗[an+1− bn+1]e
(0)[−a1 + b1] ⊗ e[b1− b2]

⊗ · · · ⊗ e[bn − bn+1]δ−2ηbn+1(λ)5
n
i=1W(ai+1, ai, bi, bi+1).

By evaluating the linear forme∗[an+1 − bn+1] we see that only the terms withbn+1 = −b1

contribute to the sum. The proof is complete. �

4.1. Separation of variables for IRF models

Let us consider the eigenvalue problem for the transfer matrix restricted toS0 ∩ S1 for
31 = · · · = 3n = 1 and n odd. The eigenfunction may be viewed as a function
u(x1, . . . , xn) defined forxi ∈ {−zi − η,−zi + η}, 1 6 i 6 n. The eigenvalue problem
readsT (z)u(x) = ε(z)u(x), with

T (−z)u(x1, . . . , xn) =
n∑
i=1

θ(λ− z + xi)

θ(λ)

∏
j 6=i

θ(z− xj )
θ(xi − xj )

×
( n∏
k=1

θ(xi + zk + η3k)u(x1, . . . , xi − 2η, · · · , xn)

+
n∏
k=1

θ(xi + zk − η3k)u(x1, . . . , xi + 2η, . . . , xn)

)
(17)

whereλ = −∑n
k=1(xk + zk).

Theorem 4.2.Suppose that31 = · · · = 3n = 1 with n odd, η 6∈ 0, and thatzi 6=
zj + 2η` mod0 for i 6= j and ` = 0,±1. Let T (z) = b(z) + c(z) be the transfer matrix
restricted to the2n-dimensional space of functions onS0 ∩ S1. Then a functionε(z) is a
common eigenvalue of the transfer matricesT (z), z ∈ C, if and only if

(i) ε ∈ 2n(χ) with χ(1) = (−1)n, χ(τ) = (−1)ne2π i
∑
zj and

(ii) ε obeys the quadratic relations

ε(zi − η)ε(zi + η) =
n∏
k=1

θ(zk − zi + 2η)θ(zk − zi − 2η) i = 1, . . . , n. (18)

To prove this theorem, letS = ×ni=1{−zi − η,−zi + η}. Let us first assume thatu(x),
x ∈ S is a common eigenfunction ofT (z) with eigenvalueε(z). In particularu does not
vanish identically onS. From the transformation properties ofT (z) under shifts ofz by 0
we see thatε(z) has to belong to2n(χ). Then settingz = −xi in the eigenvector equation
T (z)u(x) = ε(z)u(x), we get the separated equation

n∏
k=1

θ(xi + zk + η)T −2η
xi

u(x) + θ(xi + zk − η)T 2η
xi
u(x) = ε(−xi)u(x). (19)
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Inserting the two values ofxi yields
n∏
k=1

θ(zk − zi + 2η)u(x1, . . . ,−zi − η, . . . , xn) = ε(zi − η)u(x1, . . . ,−zi + η, . . . , xn)

n∏
k=1

θ(zk − zi − 2η)u(x1, . . . ,−zi + η, . . . , xn) = ε(zi + η)u(x1, . . . ,−zi − η, . . . , xn).
(20)

By multiplying these two equations we see thatε must obey the identity (18), provided we can
prove that, for at least one choice ofxj , the product

u(x1, . . . ,−zi − η, . . . , xn)u(x1, . . . ,−zi + η, . . . , xn)

does not vanish. This follows from the fact thatu is not identically zero, so that at least one
factor of this product is non-zero, and that the product of theta functions on the left-hand side
of (20) is not zero with our assumption on thezj , so that the other factor is also non-zero.

We have thus shown that a necessary condition for a functionε(z) to be a common
eigenvalue is thatε is a theta funtion obeying the quadratic relations (18).

Conversely, let us suppose thatε obeys (18). Then, for everyi, the system of equations
n∏
k=1

θ(x + zk + η)Q(x − 2η) + θ(x + zk − η)Q(x + 2η) = ε(−x)Q(x) x = −zi ± η

admits a non-trivial solutionQi(x). It follows thatu(x) =∏n
i=1Qi(xi) obeys (19). Thus, for

anyx ∈ S, (T (z)− ε(z))u(x), viewed as a function ofz is a theta function in2n(χ) vanishing
atn distinct points−x1, . . . ,−xn. As explained in the appendix, this implies that that either
the function vanishes identically or−∑ xi =

∑
zi . Since forx ∈ S,

∑
xi is−∑ zi plus an

oddmultiple ofη, the latter alternative cannot hold. Thusu is an eigenfuntion with eigenvalue
ε. The theorem is proven.

5. Conclusions

In this paper we have studied integrable models associated to elliptic curves by Sklyanin’s
method of separation of variables. We have shown how in the elliptic version of the
Gaudin model, previously considered in [4], this method implies the completeness of Bethe
eigenfunction in Verma modules, in the sense that for every eigenvalue one has a Bethe
eigenfunction (although in the case of degenerate eigenvalues one cannot exclude the existence
of additional eigenfunction not of the Bethe type).

In the difference case, the analogue of the transfer matrix in the separated variables was
shown to be a twisted transfer matrix associated to a representation ofEτ,η(sl2) by difference
operators. The eigenvalue problem can be posed in two different cases. In the continuous
case, the variables are assumed to be complex and one asks for eigenfunctions with theta
functions properties, as one does in the differential case. These eigenfunctions are of the
Bethe ansatz type. In the discrete case, the variables are assumed to take values in a finite set.
The eigenvalue problem can still be solved by separating variables yielding eigenfunctions of
the (inhomogeneous) row-to-row transfer matrix of IRF models with antiperiodic boundary
conditions. In both cases one has a completeness result.

Let us conclude by mentioning some open questions. In the difference case one has the
transfer matrix in the ‘separated variables’. Is there a ‘quantum Radon transform’ as in the
differential case, which maps the transfer matrix of the IRF model with periodic boundary
conditions to this transfer matrix? Is there an analogue of the equivalence between the local
problem and the global problem of [12] in the elliptic case?
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Appendix. Elliptic polynomials

A.1. Theta functions

Let Im τ > 0 and setq = e2π iτ . Let0 be the latticeZ+τZ and0∗ ' (C×)2 the group of group
homomorphisms0 → C×. Let φ be the homomorphismφ : χ 7→ 1

2π i (ln χ(τ) − τ ln χ(1))
(or, more invariantly, 1

2π i (ω1 ln χ(ω2)−ω2 ln χ(ω1)), for any oriented basisω1, ω2 of 0) from
0∗ to the elliptic curveE = C/0.

Forχ ∈ 0∗ let2k(χ) be the space of theta functions of levelk and characterχ . It consists
of entire holomorphic functionsf (z) such thatf (z + r + sτ ) = χ(r + sτ ) exp(−π ik(s2τ +
2sz))f (z) for all r + sτ ∈ 0.

The dimension of2k(χ) is zero ifk < 0. It is k if k > 1. The dimension of20(χ) is one
if φ(χ) = 0 and vanishes otherwise.

We have the following unique factorization result.

Proposition A.1. The function ofz ∈ C

f (a,w; z) = eaz
k∏
j=1

θ(z− wj)

belongs to2k(χ), withχ(r +sτ ) = (−1)(r+s)kera+s(aτ+2π i
∑

j wj ). Every function in2k(χ) is of
the formC ·f (a,w; z) for some constantC and this representation is unique up to permutation
of thewj if one requires thewj to be in the fundamental domainF = {x + yτ |x, y ∈ [0, 1)}.

Proof. It follows from the transformation properties of theta functions that the number of
zeros(2π i)−1

∫
∂F

d lng, counted with multiplicities, inF of a theta functiong ∈ 2k(χ) is k.
If w1, . . . , wk denote the zeros ofg theng(z)/f (a,w; z) is doubly periodic and regular, thus
constant. Uniqueness follows from the fact thata is uniquely determined by the zeroswj and
the characterχ . �

Corollary A.2. LetE be the elliptic curveC/0, and, fork = 1, 2, . . . , Sk(E) = E/Sk be its
kth symmetric power. The mapP(2k(χ))→ Sk(E) sending a function to the set of its zeros
modulo0, is injective. Its image consists of classes[w1, . . . , wk] such that

∑
j wj = φ(χ)+kδ,

whereδ is the image inE of (1 + τ)/2.

A.2. Interpolation

Theorem A.3. Supposez1, . . . , zk ∈ C are pairwise distinct modulo0 andχ ∈ 0∗ is such
that

∑k
i=1 zi 6= φ(χ) + kδ mod0. Then for anyy1, . . . , yk ∈ C there exists a unique function

f ∈ 2k(χ) such thatf (zi) = yi for all i = 1, . . . , k.

The interpolation formula givingf is

f (z) =
m∑
j=1

yje
2π ia(z−zj ) θ(z− zj + b)

θ(b)

∏
l:l 6=j

θ(z− zl)
θ(zj − zl) .

Herea andb are such that the character of all terms in the sum are equal toχ , so

a = 1

2π i
ln χ(1)− k

2

b = 1

2π i
(τ ln χ(1)− ln χ(τ)) +

k∑
j=1

zj − k1 + τ

2
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for any choice of the branch of the logarithm. The assumption onχ ensures thatb 6∈ 0 so that
the denominatorθ(b) does not vanish.

The function is unique since the difference of any two is a theta function vanishing atm

points. By corollary A.2, with our assumption onχ , it must vanish identically.

A.3. Difference equations

Consider the following problem arising in integrable models. Givenγ ∈ C−0 and functions
A+(z) ∈ 2k(χ+), A−(z) ∈ 2k(χ−), find ε(z) such that the difference equation

A+(z)Q(z− γ ) +A−(z)Q(z + γ ) = ε(z)Q(z) (21)

has a non-trivial solutionQ(z) in some2m(χ).
A necessary condition is that all terms are theta functions with the same character. Soε

has to be of levelk andχ+(1) = χ−(1), χ+(τ )e2π iγm = χ−(τ )e−2π iγm = character ofε.
A pair (ε,Q) of theta functions (withQ non-trivial) obeying the difference equation (21)

will be called an elliptic polynomial solution of (21).

Proposition. SupposeA±(z) ∈ 2k(χ±)withχ+(r+sτ ) = χ−(r+sτ )e−4π iγms for all r+sτ ∈ 0
and some positive integerm. If a,w1, . . . , wm are solutions of the system of equations

A+(wi)
∏
j :j 6=i

θ(wi − wj − γ ) = e2aγA−(wi)
∏
j :j 6=i

θ(wi − wj + γ ) i = 1, . . . , m (22)

such thatwi 6= wj mod0 for all i 6= j , then the functions

Q(z) = eaz
m∏
j=1

θ(z− wj) (23)

and

ε(z) = A+(z)Q(z− γ ) +A−(z)Q(z + γ )

Q(z)
(24)

form an elliptic polynomial solution of (21). Conversely, if(ε,Q) is an elliptic polynomial
solution of (21), then there exists a solutiona,w1, . . . , wm of the system (22) such thatQ is
of the form (23) (up to a multiplicative constant) andε is given by (24).

Proof. LetQ be the function defined in (23). The ratio (24) obeys the transformation property
of a theta function, but may be singular at the zeroswi of Q.

Theith equation in the system or, more precisely, the equation equivalent to it ifγ ∈ C−0:

A+(wi)e
−γ a

m∏
j=1

θ(wi − wj − γ ) +A−(wi)eγ a
m∏
j=1

θ(wi − wj + γ ) = 0

is the condition that the left-hand side of the (21) vanishes atwi . Thus, ifa,w1, . . . , wm obey
the system of equations, then the quotientε of this left-hand side byQ(z) is regular atwi and
thus everywhere and(ε,Q) is an elliptic polynomial solution.

Suppose now that(ε,Q) is an elliptic polynomial solution. By proposition A.1,Q can be
written in the form (23) if we normalize it properly. The pointswi are the zeros (modulo0) of
Q. Then the left-hand side of the difference equation vanishes atwi so thewi are a solution
of (22). �

Remark. The system of equations is usually written in the form∏
j :j 6=i

θ(wi − wj − γ )
θ(wi − wj + γ )

= e2aγ A−(wi)
A+(wi)

i = 1, . . . , m.
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